

ISA100 Wireless Usage Classes & Safety

(Vintage ~2017)

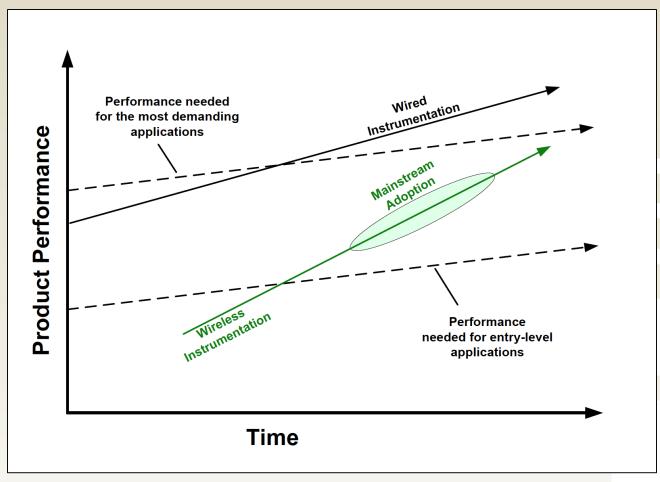
Jay Werb WCI Technical Director

6 November 2019

Presenter

Jay Werb Technical Director WCI

jay@jwerb.com



Introduction to ISA100 Wireless

- Adoption of Industrial Wireless Instrumentation
 Usage Classes
- Wireless for Safety

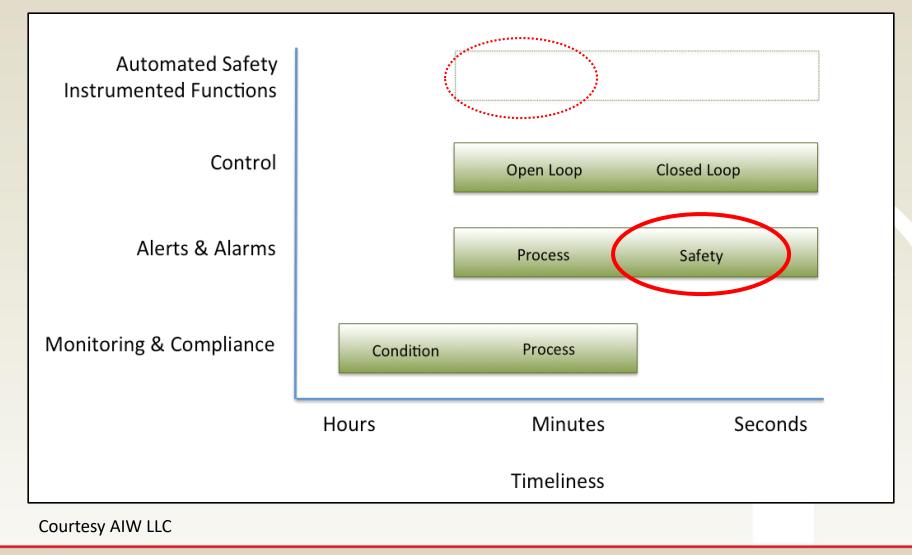
Adoption of Industrial Wireless Classic Model

Christensen innovation model adapted for industrial wireless Courtesy AIW LLC

Commonly Cited Benefits of Wireless Instrumentation

Cost Savings	 Up to 90% of installed cost of conventional measurement technology can be for cable conduit and related construction. 			
	 Typically: 1/5 the time, 1/2 the cost. 			
	New and scaled applications are now economically feasible.			
Improved Reliability	 Wired sensors may be prone to failure in difficult environments. Wireless can add redundancy to a wired solution. 			
Improved Visibility	Condition monitoring (equipment)Process monitoring			
Improved Control	 Add wireless to existing processes for more optimal control. 			
Improved Safety	Safety related alarms			

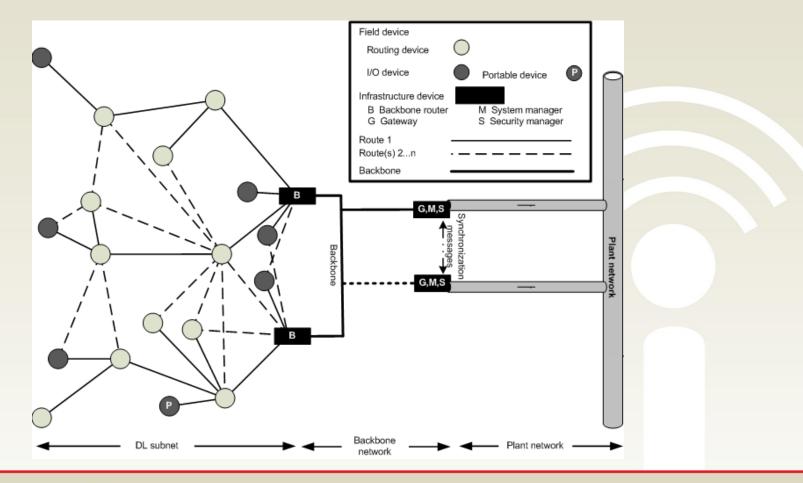
Usage Classes



Industrial Wireless IoT in 2017 Major Applications

- Process Monitoring & Control
- Asset Health Monitoring & Analytics
- Safety Related Alarms

Top Usage Classes for Wireless Instrumentation


ISA100 Wireless Major Application Types

- Asset Health Monitoring & Analytics
- Safety Alarms
- Process Monitoring & Control

• One network, all at the same time

Adoption of Wireless for Safety Design Principles

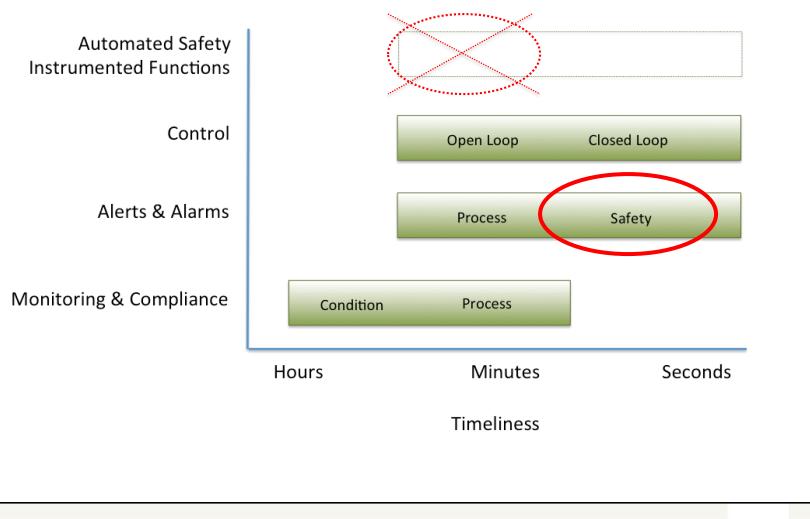
Technical requirements for Industrial wireless sensing & control (Voice of the customer, ~2005)

1. Rate and Latency	 Publication rates 1-2 seconds Capable of 100 ms latency Controlled latency, ~50% publication rate 4 Hz publication in constrained configurations
2. Mesh Networking	 IP Backbone: Engineered and scalable Mesh and non-mesh topology; access points and field devices Peer-to-peer communication Objects = Function blocks at device level Long and deterministic battery life
3. Reliability	 Wireless transmission is deterministic Wireless transmission is received Wireless transmission is accurate Redundant communication paths to process control network
4. Security	Wireless transmission is secure; prevention & detection

Safety Related Alarms

Applications

- Gas Detection
- Fire Prevention
- Level Detection
- Safety Showers
- Etc...


Wireless Requirements

- Controlled Quality of Service
 - Diagnostics!
- Low and Deterministic Latency
- Layered Open Architecture
 - e.g. ProfiSAFE

Industrial Wireless Safety Today

Courtesy AIW LLC

Typical Wireless Safety Application

- "...it is assumed that the risk analysis team has already determined that the protection layer comprised of an alarm with operator action generated from a wireless transmitter meets the specificity and independence criteria."
- "...Risk reduction claimed is less than or equal to 10."

From ISA84 WG8 draft, ~2016.

Adoption of Wireless for Safety Design Principles

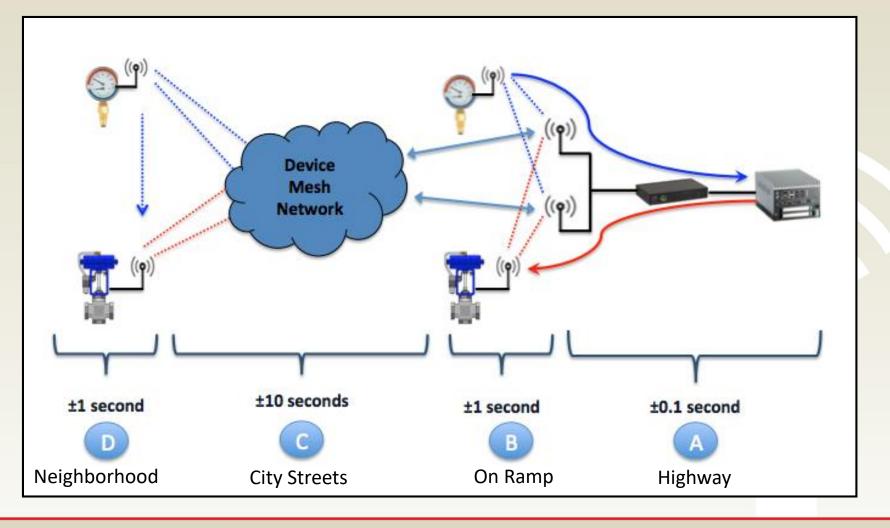
- Latency and Availability
- Network Design Common Best Practices
- Security Matrix
- Denial of Service
- Some Other Considerations

Latency, Availability

Latency

• *"Wireless sensor network data latency is the time between the acquisition of a measurement value and the delivery of that data via the wireless network to a gateway." (ISA84 WG8 draft)*

Availability


• Percentage of values received within the required response time. Can be measured per device or for an overall system.

Sidebar

- An exception may be a late-arriving alarm, or a stale state.
- Be alert for freshness requirements at times when there is no alarm.

Mesh Networks Latency Considerations

Network Design Common Best Practices

"... it is critical to closely **adhere to manufacturer's best practices** when designing and laying out a wireless sensor network."

- Conservative communication range
- Reporting Rates
 - Device and router battery capacity
 - Wireless channel capacity
 - Infrastructure capacity
- Centrally located infrastructure
- Control hop depth
- Path redundancy (Infrastructure and/or mesh)
- Avoid bottlenecks
- Use network layout and simulation tools
- Documentation!!!

Design network with plenty of margin, and monitor that margin carefully.

Derived from ISA84 WG8 draft.

Security Matrix

	Authentication	Verification		Encryption	Access	Кеу	
		Integrity Check	Time		Control	Management	
Sniffing			✓	✓		✓	
Tampering		~	✓			✓	
Spoofing	✓		✓	✓	✓		
Replay Attack		~	✓			✓	
Routing Attack	✓			✓	✓	✓	
DoS Attack	See Next Slide						

Authentication, Integrity Check, TAI, and Encryption are generally features of an interoperable communication standard such as ISA100 Wireless. User should not be able to disable or mis-apply these features.

Access Control and Key Management generally involve adherence to manufacturer's best practices.

Similar table is in ISA84 WG8 draft.

Denial of Service

Radio standards and implementations should apply a variety of techniques to operate reliably in the presence of interference.

- ➤ Unintentional interference ≈ coexistence
- Intentional interference ≈ denial of service attack

Common strategies

- Spread spectrum modulation
- Redundant routing
- Channel blacklisting
- LBT Disable (Listen Before Talk)
 - LBT may be required due to regulations, policies, or coexistence with other systems
 - LBT is configurable in ISA100 Wireless
 - Regulations and/or policies may allow LBT to be disabled only at reduced power
- Diagnostics!!!
 - For example, LBT backoff counts
- Proven in Use

Some Other Considerations

Gateway-Host Communications

- Use well-known standards for Gateway-Host communications
- Security considerations for Gateway (ISA99)

Alarm Management

- General ISA18 considerations apply
- Large numbers of wireless devices may raise concerns about alarm floods

Battery Management

- Battery life should exceed instrument's natural service interval
- > Avoid network configurations and processes that randomize battery life

Data Quality Diagnostics

- > Early detection and prevention of stale data conditions
- Include information about health & timeliness of wireless sensor data
- General device diagnostics

Network Diagnostics

- Include ample margin in the wireless design.
- *Real-time recovery from reduced margin, while meeting availability targets.*
- > Diagnostics, HMI, processes for systematic loss of margin.

Adoption of Wireless for Safety Summary

Cost savings from wireless enable scaled adoption of safety applications

ISA100 Wireless is commonly used today for safety related alarms

Proven in use, following manufacturer best practices

(Not covered here: SIL-2 ratings should accelerate integration with safety systems)

Questions?

