

ISA100 WCI Webinar

Webinar date: February 22, 2023 The presentation will begin at 11:00 EST (UTC-5)

The benefits of steam trap monitoring to reach your sustainability goals

Presenter:

Philippe Moock pmoock@armstronginternational.com

1. About the speaker

- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Steam & Condensate Loop
- 6. Cost of Steam
- 7. Steam Trap Failures
- 8. Wireless Monitoring
- 9. Armstrong University

10. Conclusion

About the Speaker

Philippe Moock

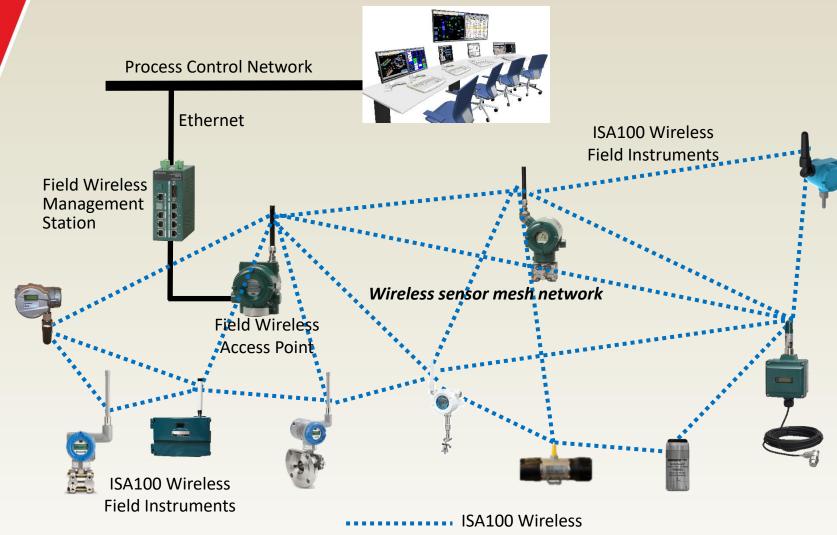
Global Director Thermal Insight Group

Armstrong International

Philippe started his career in factory automation before joining Armstrong in 2011. He currently leads the "Thermal Insight Group" focused on digital transformation of thermal utilities and providing insights to optimized them.

He hold a master in mechanical engineering from Belgium where he is from as well as an MBA from the US. Citizen of the world, he has lived and worked in Belgium, Florida, India, and China before moving to Michigan in 2017. He has also frequently traveled for business, optimizing customers' thermal utilities, in Middle East, Asia, and Africa.

His promise is to deliver intelligent system solutions that improve utility performance, lower energy consumption and reduce environmental emissions while providing an enjoyable experience.


- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Steam & Condensate Loop
- 6. Cost of Steam
- 7. Steam Trap Failures
- 8. Wireless Monitoring
- 9. Armstrong University
- 10. Conclusion

Introduction to Industrial Wireless

Applications examples

- Machine health monitoring
- Basic process control
- Monitoring of well heads
- Remote process monitoring
- Leak detection monitoring
- Diagnosis of field devices
- Condition monitoring of equipment
- Environmental monitoring
- Tank level monitoring
- Gas detection
- Fuel tank gauging
- Steam trap monitoring
- Open loop control
- Stranded data capture
- And more

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Steam & Condensate Loop
- 6. Cost of Steam
- 7. Steam Trap Failures
- 8. Wireless Monitoring
- 9. Armstrong University
- 10. Conclusion

ISA100 Wireless Fast Facts

- International standard IEC 62734 since 2014
- Complies with ETSI EN 300 320 v1.8.1 (LBT)
- End-User Driven Standard meeting all current and future industrial needs
- Sensor routing or field routers for best performance Freedom of choice
- Broad Multi-Vendor Portfolio of ISA100 Wireless Devices
- ISA100 Wireless enables SIL-2 Certification
- Ensured Interoperability best-in-class solutions from best-in-class suppliers
- Readily available ISA100 Wireless Modules and Stacks
- Enable fast-track development and go to market

Benefits of ISA100 Wireless Instrumentation

Cost Savings	 Up to 90% of installed cost of conventional measurement technology can be for cable conduit and related construction Typically: 1/2 the costs, 1/5 of the time New and scaled applications are now economically feasible
Improved Reliability	 Wired sensors may be prone to failure in difficult environment Wireless can add redundancy to a wired solution
Improved Visibility	 Condition monitoring of secondary and remote equipment Process monitoring, fast additional data for trouble shooting
Improved Control	 Add wireless to existing processes for more optimal control
Improved Safety	 Safety related alarms - end to end SIL2 certifiable

ISA100 Wireless Product Portfolio

Control

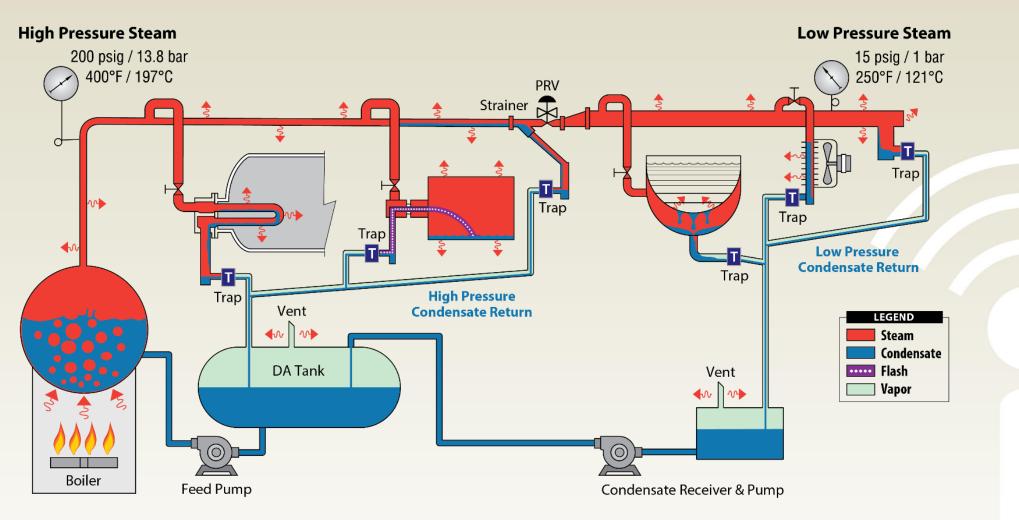
Measurement &

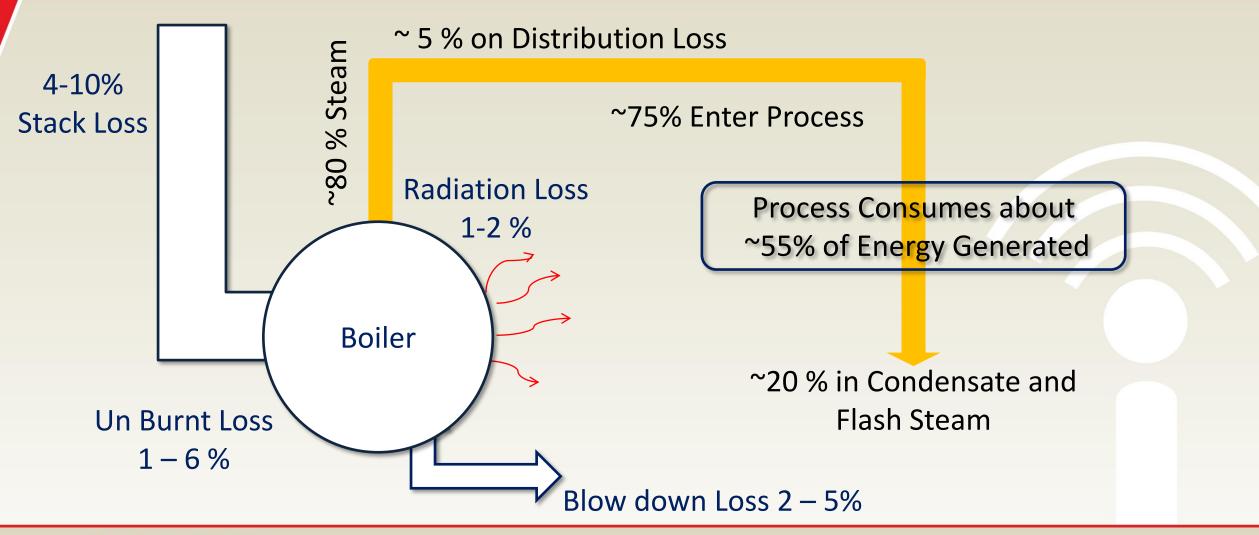
- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Steam & Condensate Loop
- 6. Cost of Steam
- 7. Steam Trap Failures
- 8. Wireless Monitoring
- 9. Armstrong University
- 10. Conclusion

Armstrong International

Five Generations of Family Ownership and Leadership

Armstrong International


- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Steam & Condensate Loop
- 6. Cost of Steam
- 7. Steam Trap Failures
- 8. Wireless Monitoring
- 9. Armstrong University
- 10. Conclusion


Typical Steam and Condensate loop

Typical Steam and Condensate loop

Armstrong

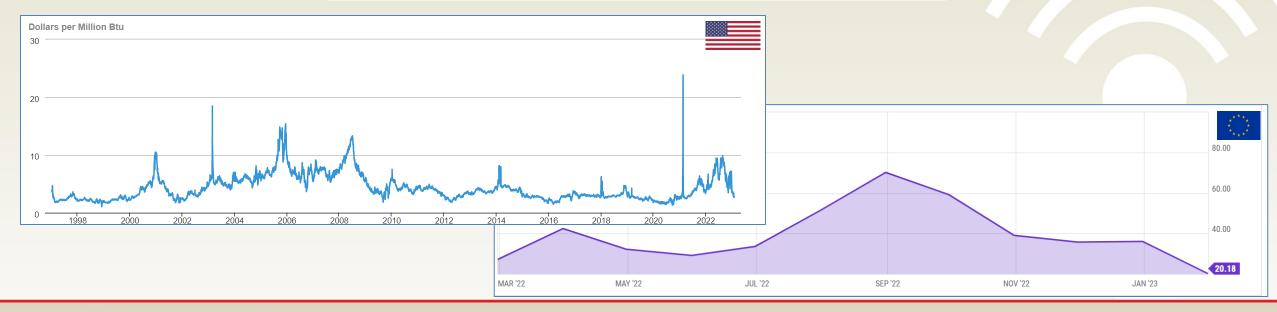
- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Steam & Condensate Loop
- 6. Cost of Steam
- 7. Steam Trap Failures
- 8. Wireless Monitoring
- 9. Armstrong University
- 10. Conclusion

Cost of Steam

Cost of steam includes

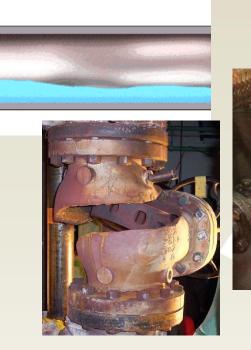
- Fuel
- Make-up water
- Chemicals
- Sewage
- CO₂ emissions
- ...

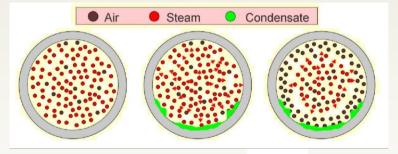
If we only take the fuel cost into consideration:


Heat Cost for 100psig steam [\$/1,000lbs]= Fuel costs [\$/MMBtu] / Boiler Efficiency

Cost of Steam

Cost of Natural gas	Heat cost for 100psig steam
\$5/MMBtu	\$6.25/1,000lbs
\$10/MMBtu	\$12.50/1,000lbs
\$20/MMBtu	\$25/1,000lbs
\$60/MMBtu	\$120/1,000lbs


- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Steam & Condensate Loop
- 6. Cost of Steam
- 7. Steam Trap Failures
- 8. Wireless Monitoring
- 9. Armstrong University
- 10. Conclusion



Steam Trap Failures

- If a steam trap **fails closed** (cold):
 - Wet steam
 - Water hammering
 - Damaged turbine LP saturated steam stage
 - Piping corrosion
 - Erosion on valves, reducers
 - Flooded heat exchanger
 - Decrease in production
 - Reduced heat transfer
 - Batch process losses
 - Thermal stress
 - Non-Condensable Gases in the system
 - Air is an insulator: heat exchanger less efficient
 - Oxygen in the pipe = corrosion: $H_2O + CO_2 \rightarrow H_2CO_3$ (Carbonic Acid)
 - System binding: flow of steam and condensate can be blocked
 - Temperature drops because steam pressure drops

Steam Trap Failures

- If a steam trap **fails open** (leaking or blow-thru):
 - Increased back pressure in condensate return line
 - Reduced flow for surrounding steam traps
 - Stalling surrounding heat exchanger
 - Steam losses (monetary losses)
 - Safety issue
 - Environmental issue

Steam Trap Failures

	Service Life (in Years)	Annual Failure Rate	Light Industry
Low Pressure (<	50%		
Thermodynamic (Disc)	7	14%	20%
Inverted Bucket	15	7%	15%
Bimetallic	10	10%	30%
Wafer or Bellow	8	13%	25%
Float & Thermostatic	8	13%	10%
Medium Pressure	e (75 – 200 psig) – Process	5	45%
Thermodynamic (Disc)	5	20%	40%
Inverted Bucket	10	10%	10%
Bimetallic	8	13%	0%
Wafer or Bellow	5	20%	0%
Float & Thermostatic	5	20%	50%
High Pressure	5%		
Thermodynamic (Disc)	3	33%	60%
Inverted Bucket	7	14%	20%
Bimetallic	6	17%	10%
Wafer or Bellow	3	33%	0%
Float & Thermostatic	6	17%	10%

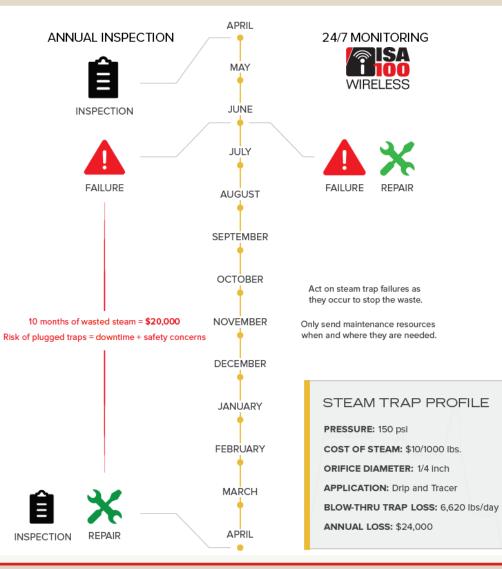
Annual Failure Rate

14.6%

Steam Losses [lbs/day]

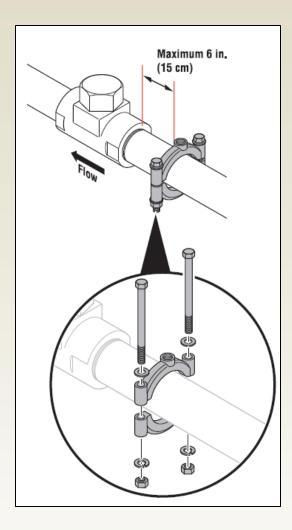
				ps	sig				
Orifice	15	30	60	100	150	250	400	600	
#60	31	46	77	118	169	272	427	<mark>632</mark>	
3/64"	42	63	106	162	233	374	586	<mark>86</mark> 9	
1/16"	75	112	188	288	414	665	1,042	1,544	
5/64"	117	175	293	450	646	1,039	1,628	2,413	\$10/1,000lbs
3/32"	168	253	422	648	931	1,496	2,344	3,474	
#38	197	296	495	760	1,091	1,754	2,747	4,072	
7/64"	228	344	575	882	1 267	2,036	3 1 9 0	4,729	
1/8"	298	449	751	1,153	1,655	2,660	4,167	6,177	A A A A A
9/64"	378	568	950	1,459	2,095	3,366	5,274	7,817	\$ 6,000/year
5/32"	466	702	1,173	1,801	2,586	4,156	6,511	9,651	
11/64"	564	849	1,419	2,179	3,129	5,029	7,878	11,678	
3/16"	671	1,011	1,689	2,593	3,724	5,984	9,376	13,897	
7/32"	914	1,376	2,299	3,530	5,068	8,145	12,761	<mark>18,916</mark>	
1/4"	1,194	1,797	3,002	4,610	6,620	10,639	16,668	24,706	
9/32"	1,511	2,274	3,800	5,835	8,378	13,465	21,095	31,269	
5/16"	1,865	2,807	4,691	7,203	10,343	16,623	26,043	38,603	

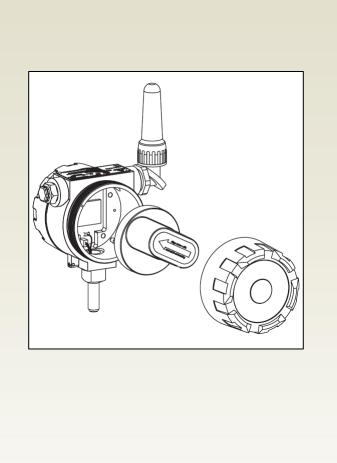
Blow-Thru steam trap, Outlet Pressure < (Inlet Pressure/2) - Source: AM0017 http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html

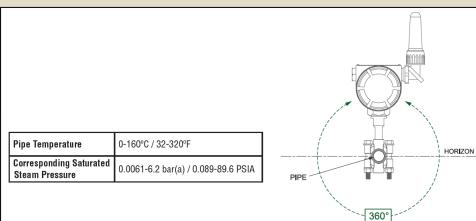

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Steam & Condensate Loop
- 6. Cost of Steam
- 7. Steam Trap Failures
- 8. Wireless Monitoring
- 9. Armstrong University
- 10. Conclusion

Why Wireless Monitoring?

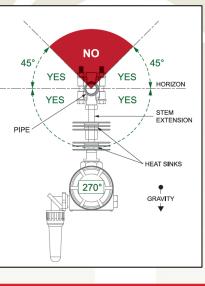
Armstrong Intelligent Monitoring (AIM®)


- ST6700 model
- Launched in 2016
- NAMUR NE107 compliant
- 4-year battery life
- Non-intrusive installation
- Class I, Division 1 ATEX Zone 0


Channel	Description			
#9	Steam Trap Condition: 1=OK, 2=COLD, 3=BLOW-THRU			
#10	Current Temperature (°C or °F)			
#11	Temperature Set Point (°C or °F)			
100+ NAMUR NE107 diagnostics available including battery life				



Armstrong Intelligent Monitoring (AIM®)



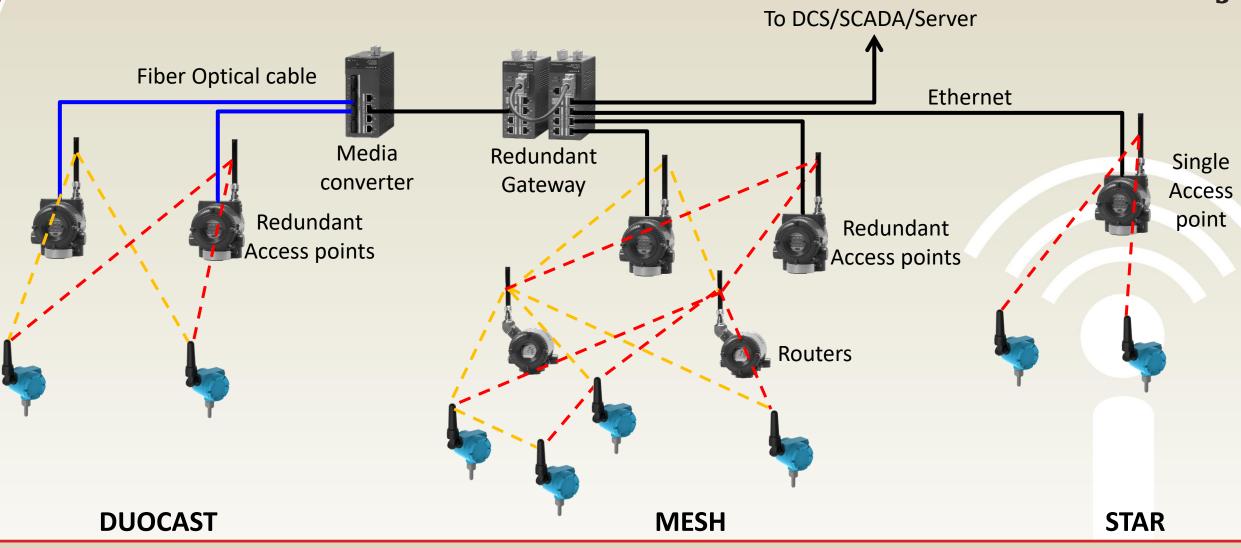
Pipe Temperature	255-440°C / 491-824°F
Corresponding Saturated Steam Pressure	43.2 bar(a) - * / 612 PSIA - *

*Steam is superheated at this temperature.

Note: Dual heat sinks and a stem extension are required.

YES

Armstrong Intelligent Monitoring (AIM®)



UL LLC Approval		
United States Intrinsic Safe for Class I/II/III, Division 1, Groups A, B, C, D, E, F, and G Zone 0, for Class I, Group IIC	Ingress Protection Rating	IP66
Temperature Code: T4 [275°F (135°C)] Ambient Temperature Range: T _{amb} -40°C to 70°C (-40°F to 158°F) For use with Armstrong model D64519 lithium metal battery only	Output Signal	ISA100.11a protocol over 2.45-GHz, ISM radio band
Standards used for Compliance: UL 913, Ed. 8; UL 60079-0, Ed. 7; UL 60079-11, Ed. 6	Temperature Operating Range	-40°C to 70°C (-40°F to 158°F)
	Materials of Construction	Housing – Low Cu, Al alloy Paint – Powder Coat O-ring – EPDM Stem – 304 SS Antenna – Nylon 6,6 Nameplate – 316 SS
	Battery Type	Encapsulated, Lithium Metal Cells
	Weight	4.1 lbs (1.9 Kg)

Wireless Infrastructure

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Steam & Condensate Loop
- 6. Cost of Steam
- 7. Steam Trap Failures
- 8. Wireless Monitoring
- 9. Armstrong University

10. Conclusion

Armstrong University Online

ARMSTRONG UNIVERSITY.

Knowledge Not Shared is Energy Wasted.®

Armstrong University Onsite

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Steam & Condensate Loop
- 6. Cost of Steam
- 7. Steam Trap Failures
- 8. Wireless Monitoring
- 9. Armstrong University

10. Conclusion

ISA100 Wireless Adoption Development Eco-system

WCI ISA100 Wireless Rapid Development Kit

- Everything you need to develop an ISA100 Wireless (IEC 62734) connected field instrument
- Develop ISA100 Wireless (IEC 62734) compliant and certifiable field instruments with minimal effort using application layer code provided
- Includes reference hardware design for ISA100 Wireless (IEC 62734) field instrument implementation
- Certified WISA modules run ISA100 Wireless communication stack
- User friendly SPiN development board includes OLED display and a large variety of sensors

https://centerotech.com/product/ wci-isa100-rapid-development-kit/

Online Resources

- Learning Center with White Papers
- Articles, End-user stories, Forum
- Receiving over 20,000 web views per month
- Full list of certified/registered ISA100 Wireless devices
- And more useful content for you and your business

Linked in ISA100 Wireless Interest Group

- Latest news, end-user and expert discussions, insights
- 1100 members and growing; please join and invite your peers to join as well !
- Receiving over 5,000 web views per month
- Limited Time Offer: Join the group and you will be entered in a prize draw to win a new iPad

ISA100 Wireless Linked in Interest Group

Limited Time Promotion

Scan the QR code and join the ISA100 Wireless Linkedin group. If you join during our limited time offer, you will be entered in a prize draw to win a new iPad!

Questions?

ISA100 Wireless Interest Group Linked in

1100+ members and growing; please join and invite your peers to join as well !

Philippe Moock

pmoock@armstronginternational.com

+1 269 816 5288

