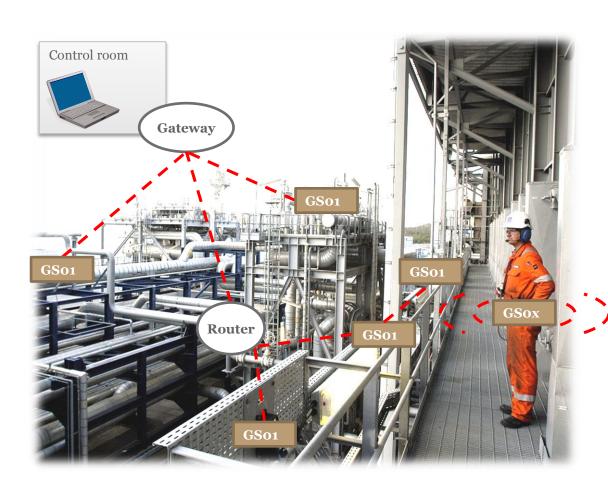
GAS SECURE

First wireless, infrared gas detector

Safe Wireless Communications using ISA100 WirelessTM for Infrared Gas Detectors

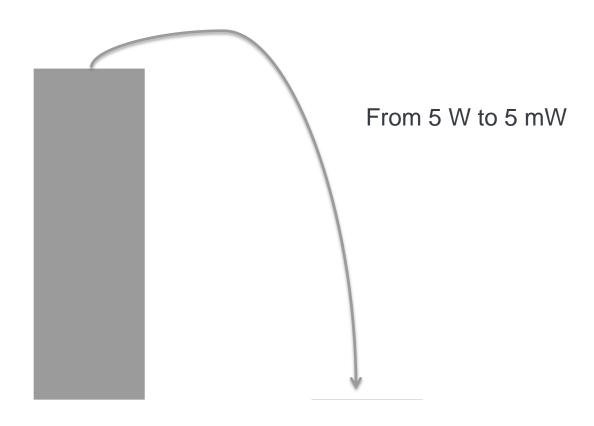

Niels Aakvaag, PhD, Senior System Architect, GasSecure

Webcast, July 16th, 2013

Agenda

- Operation of the detector
- SafeWireless TM
- Why ISA100 Wireless
- Higher level protocol support

GasSecure has developed the first wireless, infrared hydrocarbon gas detector

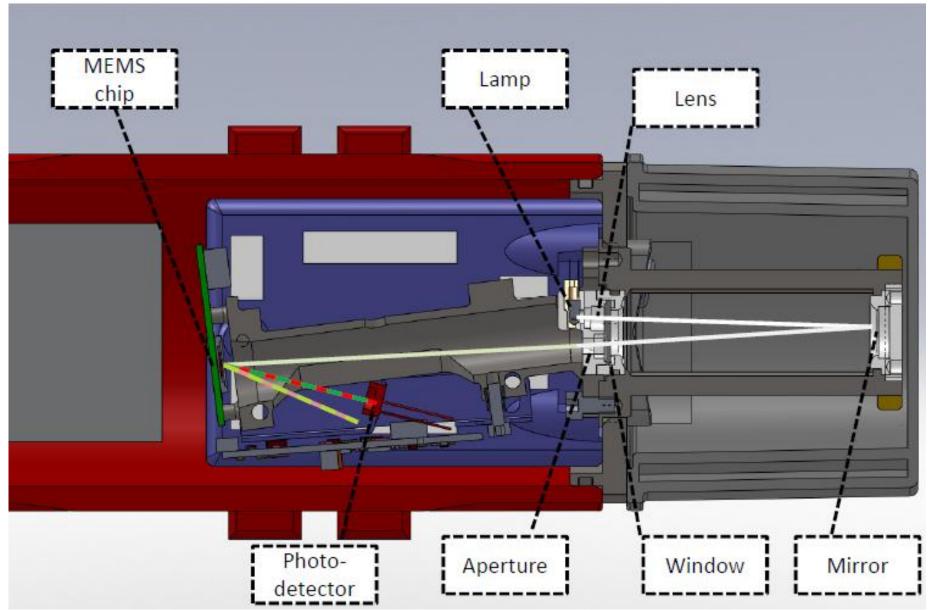


Features:

- High reliability SIL2 incl. SafeWirelessTM communication
- Continuous monitoring with two years battery life
- Fast response (5 s)
- No recalibration

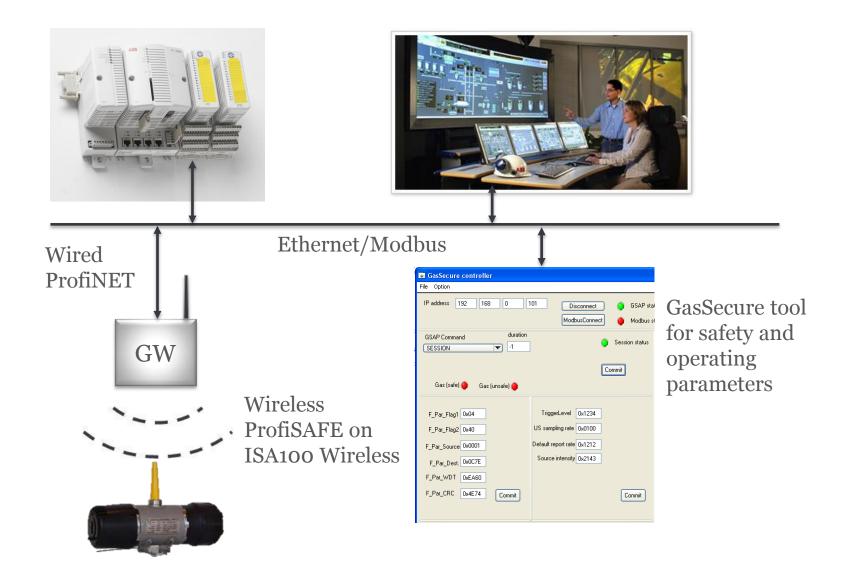
The technological challenge:

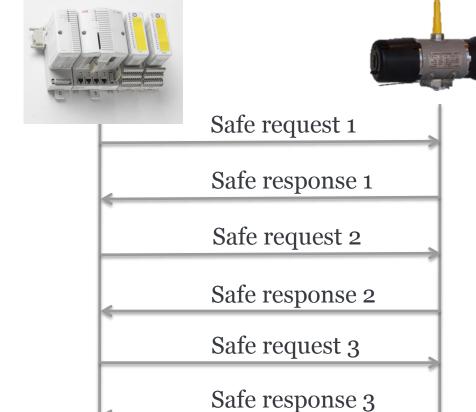
reducing energy consumption


GasSecure's design effectively removes all error sources with a configurable MEMS filter

MEMS optical filters

- Low power
- Fast response
- Calibration free
- Compact
 The same component
 performs:
 - Focusing
 - Filtering
 - Switching

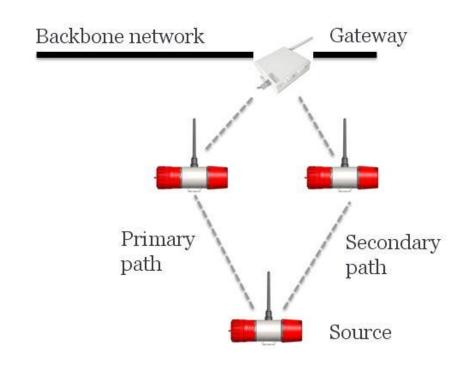

Optical design


Agenda

- Operation of the detector
- SafeWireless TM
- Why ISA100 Wireless
- Higher level protocol support

Architecture

SafeWirelessTM: SIL2-rate safe wireless communication

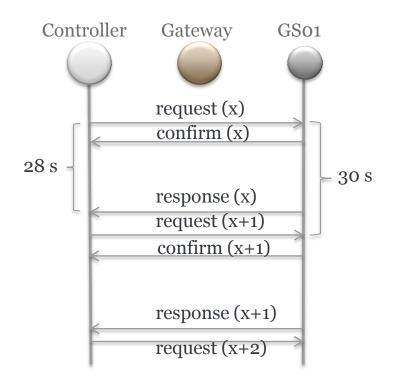

- Initiated from controller
- Max 2 seconds latency from gas detection to packet at controller
- Max two hops
- Safe communication over grey channel
- Message:
 - Gas concentration
 - Battery status
 - Diagnostic

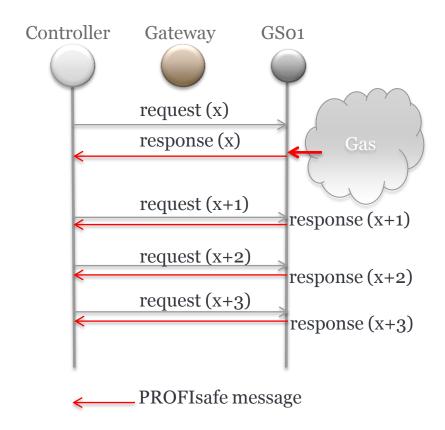
Additional communication requirements

- √ Multihop support
- √ Max 2 second latency from node to controller

Solution:

Allocate more bandwidth uplink than downlink




Safe message characteristics

Remedy:	Sequence Number	Time Out with Receipt	Codename for Sender and Receiver	Data Consistency Check
Repetition	X			
Deletion	Χ	X		
Insertion	X	X	X	
Resequencing	Χ			
Data Corruption				X
Delay		X		
Masquerade (standard message mimics failsafe)		X	X	X
FIFO failure within Router		X		

- IEC61508 dictates four mechanisms for safe communication
- ProfiSAFE over ProfiNET (or Profibus) supports all

Modes of operation

SafeWirelessTM

- Non-symmetrical BW allocation
- 'Arm' detector with safe downlink packet
- Respond late or when gas detected

Agenda

- Operation of the detector
- SafeWireless ™
- ISA100 Wireless
- Higher level protocol support

Sensitivity

 Definition: received radio signal level where packet error rate

$$P_E \le 10^{-2}$$

- At the time available ISA100 Wireless module 6dB better than WirelessHART => double range in LOS
- Important: this was NOT an issue of protocol but of radio silicon. New WirelessHART modules have same performance as ISA100 Wireless

QoS

ISA100 Wireless CONTRACTS

- Gives guaranteed (if no packet loss) time of packet delivery
- Publish
- Client/Server
- Bi-directional
- WirelessHART concept of burst channels
 - Correspond to publish mode
 - Command/Response
 - No accurate timing control of downlink packets

Object vs. Command orientation

- ISA100 Wireless

- Modern Object oriented design
- Supports tunneling of other protocols
- Facilitates design of user defined operation

WirelessHART

- Command/response oriented
- No HART command for safe communication

Other differences:

- ISA100 Wireless supports fragmented packets, in HART this needs to be done by application
- ISA100 Wireless supports slow hopping
- ISA100 Wireless supports variable length slots
- ISA100 Wireless supports star networks (nodes do not have to be routers)

Final notes on the standards

- WirelessHART has no command that supports safety
- But probably could have been done using WirelessHART
- GasSecure in the process of developing support for WirelessHART, but for non SIL systems

Agenda

- Operation of the detector
- Why ISA100 Wireless
- SafeWireless TM
- Higher level protocol support

Support for higher level protocols

- Profinet (both safe and regular)
 - GasConcentration
 - Battery status
 - Error status

- Modbus
 - As above and some additional information

- Foundation Fieldbus
 - In the process of being developed

Offshore installation

- Gullfaks C.

Rig operated by Statoil in the North Sea.

- 20 detectors

Summary

Detector

- The best performing IR detector on the market?
- Extremely low power

ISA100 Wireless chosen over WirelessHART

SafeWirelessTM with asymmetric bandwidth allocation

- ProfiSAFE

Wired communication

- ProfiNET
- FF being developed
- Integration done with ABB

