ISA100 Wireless for Control Applications

W I R E L E S S

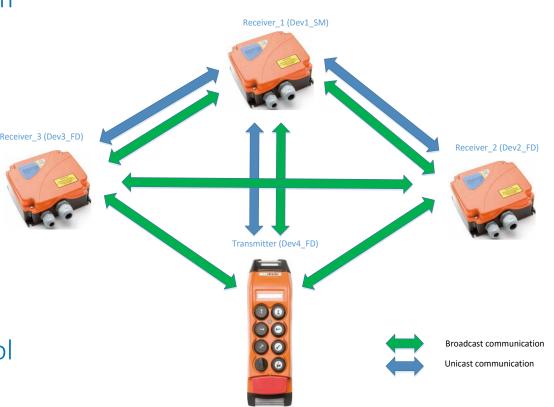
ISA100 Wireless End User Conference Rotterdam, The Netherlands 27th September 2016

Andrei Rusu, CDS Wireless

Control Data Systems

Industrial Wireless Communications

Use case 1 – Industrial Remote Controls


End User is **IKUSI VELATIA SPAIN**, Remote Controls Division Remote Controls operate Industrial Cranes and Lifts Requirements and planning:

- Reliability
- Low latency
- Security
- Fast startup
- Star network topology with 4 devices (usually)
- Line powered SM
- Battery powered nodes

ISA100 Remote Control – Solution

- ISA100 Wireless was selected for solving the problem
- API flexibility
- ISA100 Wireless data frame covers the needed bandwidth
- One node has the role of System Manager
- Any node can be selected as System Manager
- Each node follows the ISA100 standard join process
- The join process takes less than 1s
- There are 2 types of ISA100 messages used:
 - Unicast messages are used for management
 - Broadcast messages are used for process control
- Application processor developed by the end user
- Minimum standard modifications

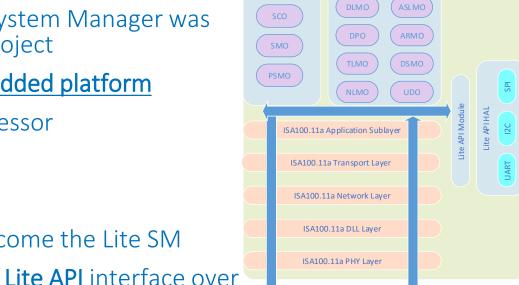
ISA100 Remote Control - Solution

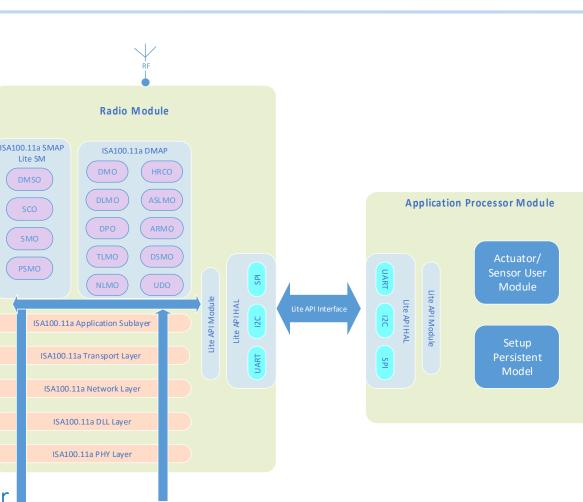
- ISA100 TDMA mechanism is used to avoid message collisions
 - Time is divided in **10 ms** timeslots
 - Time slot sequence repeats after 12 slots
 - 3,000 time slots make a superframe
 - Each time slot has a **dedicated role**:
 - Advertisement
 - Shared transmission
 - Reception
 - ISA100 Channel hopping mechanism is used to avoid interference
 - 16 channels available
 - Blacklisting mechanism

Advertisement Tx
Shared Tx for Join Response or unicast DPDU for each FD
Shared Tx for Join Request
Generic Rx
Broadcast Shared Tx and Generic Rx(lower priority)

SuperframeOffset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	2999
Device_1(SM)																
Device_2(FD)																
Device_3(FD)																
Device_4(FD)																

W I R E L E S S


•


• The ISA100 Network is controlled by a **System Manager**

Traditionally the System Manager is running on a large computer system

ISA100 Remote Control - Solution

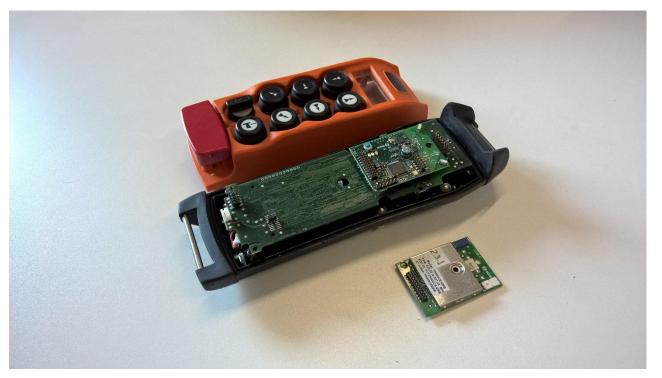
- **ISA100 Wireless** can be optimized for a particular application
- A light version (Lite SM) of the System Manager was developed specifically for this project
- The Lite SM can run on an **embedded platform**
 - 32 bit ARM Cortex M3 processor
 - 91 KB Flash (code)
 - **72 KB** RAM
- Any node in the network can become the Lite SM
- The Lite SM communicates via a Lite API interface over **UART, SPI and I2C** with an external Application Processor

M. CDS

ISA100 Remote Control – Operation

- The Lite SM capabilities (maximum size network) have been estimated at
 - 150 nodes
 - 200 links
 - 120 control packets in Queue
- Using a setup of <u>1 Transmitter</u> and <u>3 Actuators</u> the following performance was measured:
 - Join Duration for the entire network from power on: ~<u>1 second</u>
 - Minimum granted discovery duration = <u>380 ms</u>
 - Control packet latency with no retry at DLL level: <u>~20 ms</u>
 - Clock synchronism between any 2 nodes: < 100 us
- Future improvements
 - A <u>Dynamic Persistent Model</u> will support control applications for <u>larger, mesh</u> <u>networks</u>

@Control Data Systems, www.cds.ro

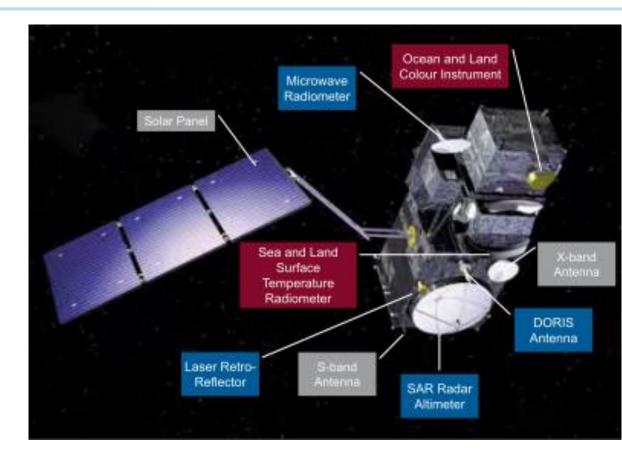


ISA100 Remote Control – Operation

W I R E L E S S

- Standard firmware upgrade
- Device diagnostics on SM
- One time radio configuration via the Persistent Model
- Channel blacklisting
- Easy replacement of a faulty radio
- Adaptive channel usage

7


W I R E L E S S

Use case 2 – Intra-Satellite Communications

End User is the European Space Agency (ESA)

Planning and requirements

- Node dimension and emission restrictions
- 2 meters inside the S/C for communication
- Low power to minimize reflections
- Guaranteed 16 KB/s bandwidth from 3 sensors
- Signal quality vs. node positioning
- Star topology
- Same hardware for all types of nodes
- Guaranteed 5 KB/s bandwidth for one actuator

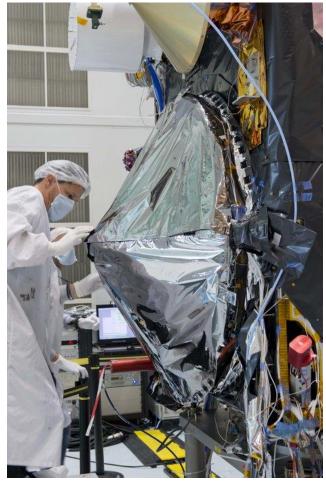
Intra-Satellite Communications - Advantages

W I R E L E S S

- Wireless advantages
- Reduction of mass
- Lower assembly cost

ISA100 Wireless advantages

- Node time synchronization
- Network extensibility
- Path redundancy
- Low latency



Intra-Satellite Communications - Integration

W I R E L E S S

Equipment integration

- Node UART interface to connect the sensors
- Additional interfaces are available (SPI, I2C)
- SpaceWire and CAN via adapters
- The BBR/SM forwards the data to the central control system
- Emission and radiation tests to remove interference with on-board equipment

Intra-Satellite Communications - Solution

- Replacement of the physical layer
 - The 802.15.4 2.4 GHz PHY layer was replaced with 802.15.4 UWB (Ultra Wide Band)
 - The data rate was increased from 250 Kbps to **6.8 Mbps**
 - This **high data rate** allows the transmission of data generated by the satellite instruments and sensors
- Increase of the packet size
 - The packet size was increased from 127 B to **1023 B** in order to optimize the network for traffic size
- Superframe duration
 - Increased from 250 msec to 1 sec

Intra-Satellite Communications - Operation

- 5 node network
 - 1 BBR/SM
 - 3 sensors
 - 1 actuator
- Test performed on 2 satellite mock-ups
 - Venus Express (at ESA)
 - Sentinel 3 (at CDS)

Legend	
Idle slot	
Receive slot	
Transmit slot	

()	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	
																																											SM
																																											S1
																																											S2
																																											S 3
																																											A1

Intra-Satellite Communications - Conclusions

W I R E L E S S

- ISA100 Wireless is suitable for Intra Satellite Communications
 - The ISA100 Wireless network can handle the required **data throughput** which is 126,472 bps or 15,809 Bps (15.43 KBps) generated by the sensors and instruments
 - The ISA 100 Wireless network meets the **required latency** of less than 1s with actual number of **less than 1 ms**
 - The ISA100 Wireless network is **resistant** to interference and **does not interfere** with on board instruments and equipment
- The ISA100 Wireless network is **flexible** enough to allow for
 - PHY layer change to UWB with 6.8 Mbps data rate
 - Data throughput optimization by using the 1023 B frame length, in case priority is given to data acquisition from instruments
 - Latency optimization by using the 127 B frame length, in case priority is given to control of actuators

@Control Data Systems, www.cds.ro

ISA100 Wireless for Control Applications

W I R E L E S S

Control Data Systems

Industrial Wireless Communications

@Control Data Systems, www.cds.ro