

ISA100 Wireless Training

Intro and Technology Primer

Jay Werb ISA100 Wireless Compliance Institute

> Robert Assimiti Centero

For: ISA Saudi Arabia Section 14 November 2022

ISA100 Wireless | 3252 South Miami Blvd., Suite 102, Durham, NC 27703 USA | direct (919) 990-9222 | fax (919) 549-8288 https://isa100wci.org/

Presenters

Jay Werb Technical Director WCI

email: jay@jwerb.com

Robert Assimiti CEO Centero

email: robert.assimiti@centerotech.com

Agenda

ISA100 Wireless Benefits and Use Cases

Introduction to ISA100 Wireless

Installation Considerations

ISA100 Wireless Security (time permitting)

Commonly Cited Benefits of Wireless Instrumentation

Cost Savings	 Up to 90% of installed cost of conventional measurement technology can be for cable conduit and related construction. 				
	• Typically: 1/5 the time, 1/2 the cost.				
	 New and scaled applications are now economically feasible. 				
Improved	• Wired sensors may be prone to failure in difficult environments.				
Reliability	 Wireless can add redundancy to a wired solution. 				
Improved Visibility	Condition monitoring (equipment)				
	Process monitoring				
Improved Control	 Add wireless to existing processes for more optimal control. 				
Improved Safety	Safety related alarms				

Top Usage Classes for Wireless Instrumentation

ISA100 Wireless Interoperability

Introduction to Industrial Wireless

Technical requirements for Industrial wireless sensing and control (Voice of the customer, ~2005)

Security	Flawless application of proven cryptography					
Reliable communication	24x7 operation; High data integrity					
Good power management	Long and deterministic battery life					
Open	Buy instruments from multiple suppliers					
Multi-speed	Some devices report frequently, other not					
Multi-functional	One network, many applications					
Scalable	Scalable in numbers, space, and rate. Scale through IP, not by duplication.					
Global Usability	One technology legal everywhere					
Quality of Service	Controlled latency, low error rate					
Multi-protocol	Cleanly integrate with wired investment					
Control ready	Not just monitoring					

Technical requirements for Industrial wireless sensing and control

(Voice of the customer, ~2005)

1. Rate and Latency	 Publication rates 1-2 seconds Capable of 100 ms latency Controlled latency, ~50% publication rate 4 Hz publication in constrained configurations
2. Mesh Networking	 IP Backbone: Engineered and scalable Mesh and non-mesh topology; access points and field devices Peer-to-peer communication Objects = Function blocks at device level Long and deterministic battery life
3. Reliability	 Wireless transmission is deterministic Wireless transmission is received Wireless transmission is accurate Redundant communication paths to process control network
4. Security	Wireless transmission is secure; prevention & detection

Radio Reliability Strategies in ISA100 Wireless

Leverage the Infrastructure	Messages to the backbone minimizing wireless transmissions				
Mesh networking	Alternative routes available for retries				
Time Slotted Operation	Avoid collisions and retries, deterministic message delivery				
Radio selection	Widely available IEEE radio designed for WiFi coexistence				
Low duty cycle	Transmit a small amount of data only when necessary				
Staccato operation	Short messages allow other radios in network to quickly recover				
Time diversity	Retries configurable, backoff on longer timeframes than WiFi etc				
Channel diversity	Retries using a different radio channel				
Spectrum management	Detect and blacklist problematic radio channels				
Collision avoidance	Listen before send (configurable!)				
Security	Strong checks at the link level, immediate detection of unsuccessful transmission				
Diagnostics	Measure and report performance of radio links				

Generally, messages are short, radio connections stable, retries on different time/channel/route.

ISA100 Wireless "Native" Application Layer

ISA100 Wireless OPC UA Information Model

- WCI standard document that defines an OPC UA Information Model to represent and access ISA100 Wireless devices
- Standardization was a cooperative effort between the WCI and the OPC Foundation
- Includes the following OPC UA models
 - ISA100 Field Devices extension of PA-DIM model (OPC 30081)
 - ISA100 Access Point
 - ISA100 Network information model

ISA100 Wireless One Network, Multiple Application Layers

ISA100 Wireless Solutions

Measurement & Control

0 TOM SOS

And more...

Common Network Architectures

KEY CHARACTERISTICS

- (•• Single subnet no backbone infrastructure
- (•• Typically scales to <100 field instruments
- (IP Instruments deployed are in close proximity
- (•• Cover smaller deployment areas
- (I• Simplified network deployment

KEY CHARACTERISTICS

- Multiple ISA100 Wireless mesh subnets connected via Wi-Fi Mesh backbone
- (• Typically scales to hundreds of field instruments
- (• Instruments are scattered throughout the facility
- Extended geographic coverage (miles/kilometers)
- (Plant wide wireless canopy

Centero Examples

ISA100 Wireless Installation Considerations

- Latency
- Network Design
- Security Matrix
- Denial of Service
- Some Other Considerations

Mesh Networks – Latency Considerations

Network Design

Please **adhere to manufacturer's best practices** when designing and laying out a wireless sensor network.

- Conservative communication range
- Reporting Rates
 - > Device and router battery capacity
 - Wireless channel capacity
 - Infrastructure capacity
- Centrally located infrastructure
- Control hop depth
- Path redundancy (Infrastructure and/or mesh)
- Avoid bottlenecks
- Use network layout and simulation tools
- Documentation!!!

Design network with plenty of margin and monitor that margin carefully.

Security Matrix

	Authentication	Verification		Encryption	Access	Key Management	
		Integrity Check	Time		Control		
Sniffing			\checkmark	\checkmark		\checkmark	
Tampering		\checkmark	\checkmark			\checkmark	
Spoofing	\checkmark		\checkmark	\checkmark	\checkmark		
Replay Attack		\checkmark	\checkmark			\checkmark	
Routing Attack	\checkmark			\checkmark	\checkmark	\checkmark	
DoS Attack	See Next Slide						

Authentication, Integrity Check, TAI, and Encryption are built into the ISA100 Wireless standard. Systems ensure that users cannot not disable or mis-apply these features.

Access Control and Key Management involve adherence to manufacturer's best practices.

Denial of Service

The ISA100 Wireless standard and implementations apply a variety of techniques to operate reliably in the presence of interference.

- ➤ Unintentional interference ≈ coexistence
- Intentional interference ≈ denial of service attack

Common strategies

- Spread spectrum modulation
- Redundant routing
- Channel blacklisting
- LBT Disable (Listen Before Talk)
 - LBT may be required due to regulations, policies, or coexistence with other systems
 - LBT is configurable in ISA100 Wireless
 - Regulations and/or policies may allow LBT to be disabled only at reduced power
- Diagnostics!!!
 - For example, LBT backoff counts
- Proven in Use

Some Other Considerations

Gateway-Host Communications

- Use well-known standards for Gateway-Host communications
- Security considerations for Gateway (ISA99)

Alarm Management

- General ISA18 considerations apply
- > Large numbers of wireless devices may raise concerns about alarm floods

Battery Management

- > Battery life should exceed instrument's natural service interval
- > Avoid network configurations and processes that randomize battery life

Data Quality Diagnostics

- > Early detection and prevention of stale data conditions
- > Include information about health & timeliness of wireless sensor data
- General device diagnostics

Network Diagnostics

- > Include ample margin in the wireless design.
- > Real-time recovery from reduced margin, while meeting availability targets.
- Diagnostics, HMI, processes for systematic loss of margin.

Questions and Discussion

