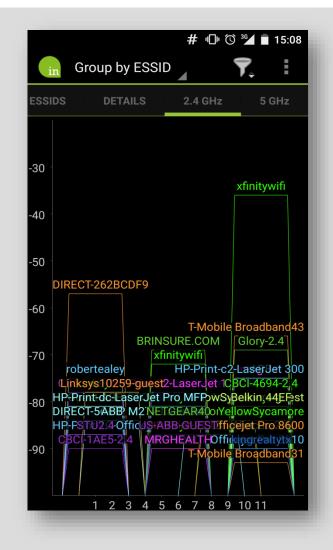


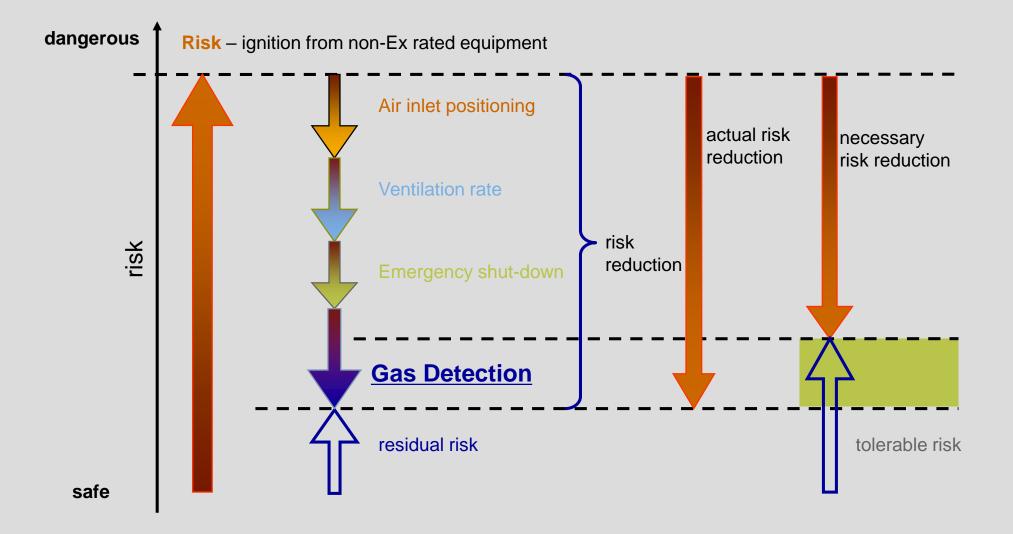

Wireless gas detection in monitoring and safety applications

Design and performance criteria for devices & networks Houston, 06/29/2016, Florian Dahm, Global Marketing Manager Oil & Gas

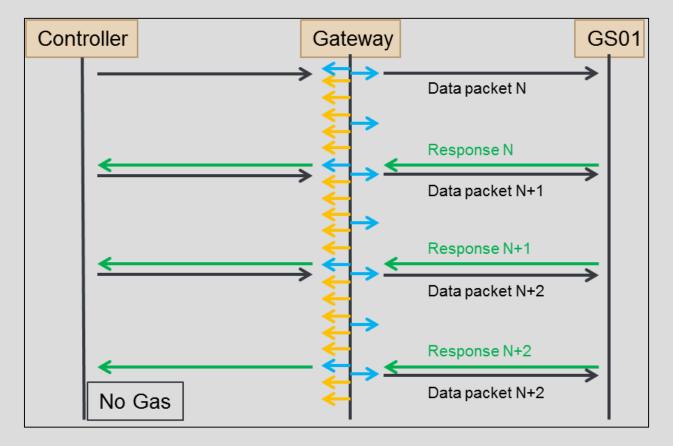
Dräger. Technology for Life®


Wireless Technology Pros and cons

Wireless offers the possibility to **significantly save on cabling, engineering, documentation and labor** –

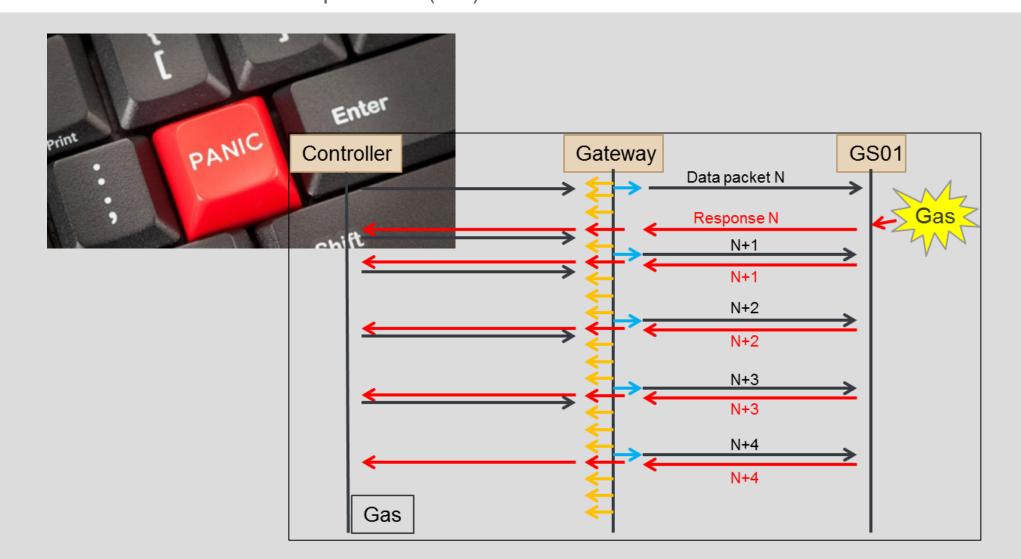

but wireless networks have to be very **carefully designed** to offer a comparable level of performance!

Monitoring or Safety? A risk-related view



- High availability
 - No lapse in detection coverage due to "blind" times or loss of packages
 - Communication patterns that allow for fast response times –
 balanced with battery lifetime for wireless applications
- High reliability
 - Reliable detection technology with no false alarms
 - o Long maintenance intervals, little/no drift in between test intervals
 - Suitable for use in SIL applications
- ⇒ Safety protocol deployment environment configuration

Wireless Networks in Safety Applications Device communication patterns (1/2)

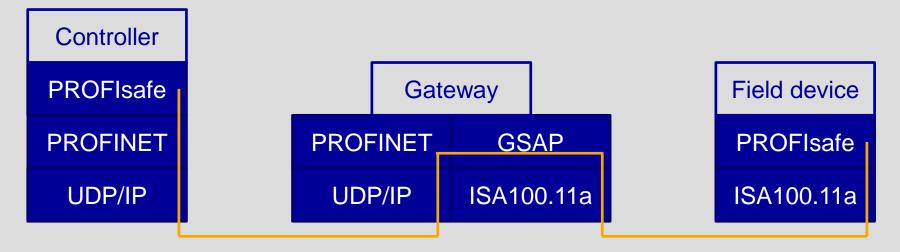


Balancing requirements for **long battery life** with **acceptable response time** – a trade-off?

Wireless Networks in Safety Applications Device communication patterns (2/2)

Wireless Networks in Safety Applications Criteria for network protocols (1/4)

- End-to-end safety protocol according to IEC 61784-3 is required in SIL environments, which means that
 - Tunnelling/mapping of foreign safety related protocols such as PROFIsafe through the network is needed
- Quality of Service through limits for bandwidth, latency, and **priority** is ensured
- Integrity/secure (encrypted) wireless communication is provided
- Device **interoperability** supports communication of devices from multiple vendors on one network is feasible
- ISA100.11a provides for all of this!


Wireless Networks in Safety Applications Criteria for network protocols (2/4)

PROFIsafe is a safety related profile **defining application specific functionality** on top of PROFINET. PROFIsafe is SIL3 certified!

Black channel principle

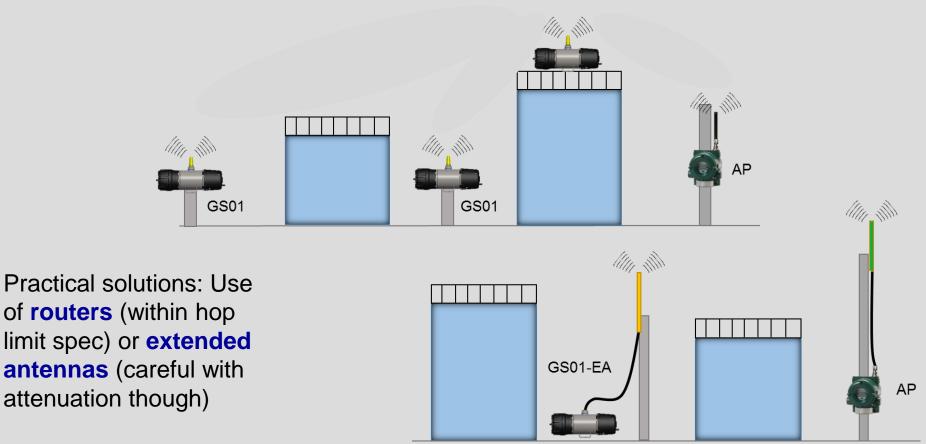
- Independent of the communication method
- Covers the entire communication path from the sensor to the controller the gateway needs to support PROFINET
- Protects for eventual failures in communication wrt to SIL capability

Error-handling mechanisms addressed by PROFIsafe: Safety-related protocols need to be able to mitigate a range of errors if used in SIL environments:

Failure/Remedy	Sequence Number	Time-out with Receipt	Codename for Sender and Receiver	Data Consistency Check
Repetition	X			
Deletion	X	X		
Insertion	X	X	X	
Resequencing	X			
Data Corruption				X
Delay		X		
Masquerade		X	X	X
FIFO failure		X		

Only the combination of **ISA100.11a and PROFIsafe** currently allows us to implement all 4 mechanisms!

Wireless Networks in Safety Applications Criteria for network protocols (4/4)



Quality of Service can give priority to packages from certain devices, protocols etc.

In safety-related applications, this can be used to give priority/reserve bandwidth/ensure low latency for safety-related packages as opposed to e.g. monitoring packages.

Wireless Networks in Safety Applications Deployment environment (1/3)

Even if we use a safety-related protocol, we still need a **reasonable level of control over the deployment environment** to ensure a high level of performance...

GS01 - Router

Dräger

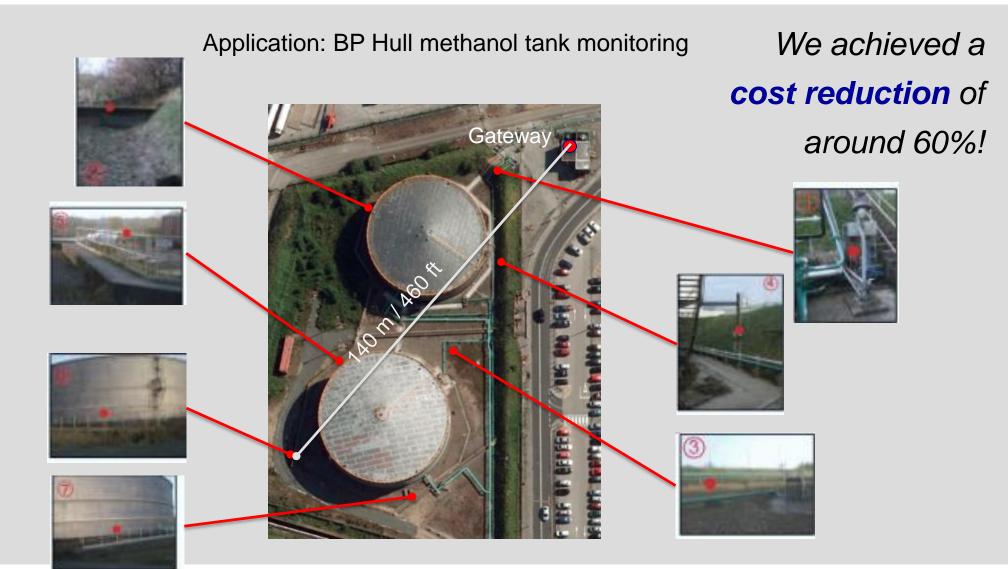
Wireless Networks in Safety Applications Deployment environment (2/3)

Co-existence with IEEE 802.11g WiFi, without CCA: Assessment of package error rate in % with a WiFi node transmitting 20 dBm EIRP, using channel 6. The field is forced to use the channel shown below:

Separation (m)	Channel 17	Channel 18	Channel 19	Channel 20
67.4	100	100	100	0
75.6	100	100	100	0
84.8	100	100	96	0
95.2	94	100	52	0
106.8	63	80	19	0
119.8	21	36	2	0
134.4	0	10	1	0
150.8	0	1	0	0
169.2	0	0	0	0
189.9	0	0	0	0

Solution: ISA100.11a provides for "clear channel assessment" (listen before talk)

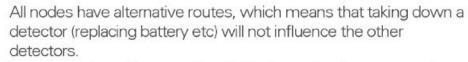
Wireless Networks in Safety Applications Deployment environment (3/3)


Co-existence with **additive white Gaussian noise** (AWGN) simulating a range of random noise sources: Assessment of package error rate with CCA turned off at different channels, example see below...

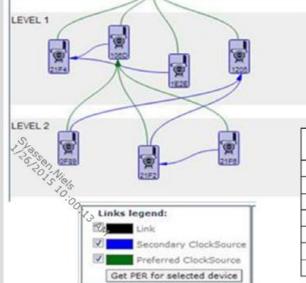
AWGN (dBm) at 50m distance	Calculated received noise power for a 2 MHz wide channel (dBm)	Package error rate (%)
0	-74.68	0
1	-73.68	1
2	-72.68	4
3	-71.68	26
4	-70.68	66
5	-69.68	91
6	-68.68	100

Solution: site surveys that **measure the noise floor for each channel**, channel blacklisting is then applied as required

Wireless Networks in Safety Applications Settings and configurations (1/2)


Wireless Networks in Safety Applications Settings and configurations (2/2)

Application: BP Hull methanol tank monitoring - commissioning


Final Network Topology & Signal Strength.

The signal strength comparison indicates a clear improvement on all the links.

Gateway links:	Oldantenna	New antenna	
GW - #20 (1E2E)	-76dBm (86)	-69dBm (123)	
GW - #24 (1205)	-99dBm (1)	-76dBm (79)	
GW - #29 (106D)	-82dBm (57)	-78dBm (70)	
GW - #30 (21F4)	-88dBm (30)	-86dBm (35)	
GW - #31 (0F89)	-	-	
GW - #36 (21F2)	-	-83dBm (44)	
GW - #38 (21F6)	-	(-)	

-

LEVEL 0

GW


Case Study Fill-in detectors for Kalundborg refinery (1/3)

	CASE: ONSHORE/REFINERY
Client / Country	Statoil Refining / Denmark
Project / Facility	Fire & Gas Extension / Kalundborg Refinery
Process / Plant / Application	Fill-in detectors for 3 process areas after risk assessment determined inadequate coverage by current system
Equipment / Infrastructure	111 units GS01 / 11 units GS01-EA / Other detectors 3 Gateways / 14 Access Points / Siemens S7
SIL or Non-SIL	SIL2 capable
Main Challenges	Large, congested plant area. Enclosed spaces.
Key Notes / Key Sales Points	Cost reductions with wireless – initial cost was estimated to be around USD 20 mil. for HC and H2S detectors. With wireless hydrocarbon detectors, costs could be brought down to roughly USD 7 mil.

Case Study Fill-in detectors for Kalundborg refinery (2/3)

- Phase 1 indicated by red clouded area and includes 1x Gateway / 2x Wireless Access Points
- Phase 2 includes 1x Gateway / 3x Wireless Access Points
- Phase 3 includes 1x Gateway / 3x Wireless Access Points

Case Study Fill-in detectors for Kalundborg refinery (3/3)

<u>Phase 1 Block 1</u> <u>Detector locations</u> Green = GS01 Purple = Other

GasSecure is providing a **turnkey service** with wireless planning, system design, setup, integration and commissioning including other F&G equipment to achieve a **SIL2 compliant system**.

Phase 1 equipment online as per 22-Jan-2016.

Thank you for your attention.

Florian Dahm Global Marketing Manager Oil & Gas <u>florian.dahm@draeger.com</u>

Dräger. Technology for Life®