

EDSA-406-2.01

 .

EDSA-406
ISA Security Compliance Institute –

Embedded Device Security Assurance –
Testing the robustness of implementations

of the IETF TCP transport protocol over IPv4 or IPv6

Version 2.01

April 2015

Copyright © 2009-2015 ASCI – Automation Standards Compliance Institute, All rights reserved

EDSA-406-2.01 2/56

A. DISCLAIMER
ASCI and all related entities, including the International Society of Automation (collectively, “ASCI”)provide all
materials, work products and, information (‘SPECIFICATION’) AS IS, WITHOUT WARRANTY AND WITH ALL
FAULTS, and hereby disclaim all warranties and conditions, whether express, implied or statutory, including, but
not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular
purpose, of reliability or availability, of accuracy or completeness of responses, of results, of workmanlike effort, of
lack of viruses, and of lack of negligence, all with regard to the SPECIFICATION, and the provision of or failure to
provide support or other services, information, software, and related content through the SPECIFICATION or
otherwise arising out of the use of the SPECIFICATION. ALSO, THERE IS NO WARRANTY OR CONDITION OF
TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION, OR NON-
INFRINGEMENT WITH REGARD TO THE SPECIFICATION.

WITHOUT LIMITING THE FOREGOING, ASCI DISCLAIMS ALL LIABILITY FOR HARM TO PERSONS OR
PROPERTY, AND USERS OF THIS SPECIFICATION ASSUME ALL RISKS OF SUCH HARM.

IN ISSUING AND MAKING THE SPECIFICATION AVAILABLE, ASCI IS NOT UNDERTAKING TO RENDER
PROFESSIONAL OR OTHER SERVICES FOR OR ON BEHALF OF ANY PERSON OR ENTITY, NOR IS ASCI
UNDERTAKING TO PERFORM ANY DUTY OWED BY ANY PERSON OR ENTITY TO SOMEONE ELSE.
ANYONE USING THIS SPECIFICATION SHOULD RELY ON HIS OR HER OWN INDEPENDENT JUDGMENT
OR, AS APPROPRIATE, SEEK THE ADVICE OF A COMPETENT PROFESSIONAL IN DETERMINING THE
EXERCISE OF REASONABLE CARE IN ANY GIVEN CIRCUMSTANCES.

B. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER DAMAGES
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL ASCI OR ITS
SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,PUNITIVE, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFITS OR
CONFIDENTIAL OR OTHER INFORMATION, FOR BUSINESS INTERRUPTION, FOR PERSONAL INJURY,
FOR LOSS OF PRIVACY, FOR FAILURE TO MEET ANY DUTY INCLUDING OF GOOD FAITH OR OF
REASONABLE CARE, FOR NEGLIGENCE, AND FOR ANY OTHER PECUNIARY OR OTHER LOSS
WHATSOEVER) ARISING OUT OF OR IN ANY WAY RELATED TO THE USE OF OR INABILITY TO USE THE
SPECIFICATION, THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT OR OTHER SERVICES,
INFORMATON, SOFTWARE, AND RELATED CONTENT THROUGH THE SPECIFICATION OR OTHERWISE
ARISING OUT OF THE USE OF THE SPECIFICATION, OR OTHERWISE UNDER OR IN CONNECTION WITH
ANY PROVISION OF THIS SPECIFICATION, EVEN IN THE EVENT OF THE FAULT, TORT (INCLUDING
NEGLIGENCE), MISREPRESENTATION, STRICT LIABILITY, BREACH OF CONTRACT OF ASCI OR ANY
SUPPLIER, AND EVEN IF ASCI OR ANY SUPPLIER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

EDSA-406-2.01 3/56

Revision history

version date changes

1.1 2010.06.15 initial version published to http://www.ISASecure.org

1.41 2010.09.28

added test TCP.T16, probe of unknown application protocols at open TCP ports;
create distinct test criteria at high but supported rate and full auto-negotiated link
rate; removed protocol conformance aspects of tests since covered by other
industry efforts; removed discovery phase since not required to perform uniform
testing over all devices; removed mixing of valid and invalid messages in load
testing since valid messages create more load on device

2.01 2015.04.13

incorporate EDSA-102 v1.2 errata; change terminology essential services to
essential functions; correction of byte 2 WSN figure 3; add sample size to
dieharder test TCP.T01; require pseudo random test generation where
applicable; remove conformance pass criteria for TCP.T14; load tests run two
minutes; clarify pass/fail in Clause 7; lower level protocols must be valid in fuzz
tests; incorporate feedback from the tool recognition process in T07, T09, T13;
add missing textual list in 4.2.3; added two recently-standardized options and
marked others as obsolete (but still could be sent by an attacker); added
clarifications that instances of all alternative option classes should be included in
testing; technical corrections on TCP.T11

http://www.isasecure.org/

EDSA-406-2.01 4/56

Contents
1 Scope 7

2 Normative references 7

3 Definitions and abbreviations 8

3.1 Definitions 8

3.2 Abbreviations 9

4 Elements of the protocol under test 10

4.1 General 10

4.2 TCP TPDUs 10

4.3 Mandatory and optional protocol features 24

5 Elements of other protocols required for the testing 25

5.1 Protocol(s) from inferior layers used by this protocol 25

5.2 Protocol(s) from superior layers used to test this protocol 25

6 Robustness testing 26

6.1 Goals that drive testing requirements 26

6.2 Testing overview 26

6.3 Protocol stack used for testing 27

6.4 Phase 0: DUT preconditioning 28

6.5 Phase 1: Baseline operation 28

6.6 Phase 2: Basic robustness testing 29

6.7 Phase 3: Load stress testing 30

6.8 Reproducibility 36

7 Specific test cases 36

Bibliography 56

Figure 1 – TCP TPDU structure 11

Figure 2 – Generic option structure 12

Figure 3 – Specific option structure (1/2) 13

Figure 4 – Specific option structure (2/2) 14

Figure 5 – Virtual TCP over IPv4 TPDU used for checksum computation 15

Figure 6 – Virtual TCP over IPv6 TPDU used for checksum computation 16

Figure 7 – TCP state machine 17

Figure 8 – T/TCP state machine 18

Table 1 – TCP state machine transitions 17

Table 2 – T/TCP state machine transitions 19

Table 3 – TCP connection: Conceptual state and TPDU variables 20

Table 4 – TCP connection: Acceptability of a received segment 21

Table 5 – Protocols used in test process 36

Table 6 – TCP.T00: Baseline operation 37

Table 7 – TCP.T01: Statistical analysis of initial sequence number values 38

Table 8 – TCP.T02: Truncated TPDU: truncated fixed header 38

EDSA-406-2.01 5/56

Table 9 – TCP.T03: Truncated TPDU: truncated header options 39

Table 10 – TCP.T04: Truncated TPDU: truncated priority data 40

Table 11 – TCP.T05: Invalid TPDU checksum 40

Table 12 – TCP.T06: Malformed or undefined TCP TPDU options 41

Table 13 – TCP.T07: Unrestricted interpretation of select TCP TPDU options 41

Table 14 – TCP.T08: “Land” and “LaTierra” attacks 42

Table 15 – TCP.T09: Spoofed TCP flags 43

Table 16 – TCP.T10: Inconsistent peer receive window edges 43

Table 17 – TCP.T11: Defense against peer dishonoring of the DUT’s TCP receive window edges 44

Table 18 – TCP.T12: Inconsistent and/or contextually-inappropriate selective acknowledgment
block edges 45

Table 19 – TCP.T13: Manipulation of DUT timestamps echoed to the DUT 46

Table 20 – TCP.T14: Priority traffic interleaving 47

Table 21 – TCP.T15: Use of extremal TCP port numbers 48

Table 22 – TCP.T16: TCP conveyed-application robustness 48

Table 23 – TCP.T17: Maintenance of service under high load: Raw TPDU flood of urgent data 49

Table 24 – TCP.T18: Maintenance of service under high load: Initial SYN flood 50

Table 25 – TCP.T19: Maintenance of service under high load: Unused open connection flood 51

Table 26 – TCP.T20: Maintenance of service under high load: Segment reassembly flood 52

Table 27 – TCP.T21: Maintenance of service under high load: Closed receive window flood 53

Table 28 – TCP.T22: Maintenance of service under high load: RST flood 54

Table 29 – TCP.T23: Maintenance of service under high load: FIN flood 54

Table 30 – TCP.T24:Maintenance of service under high load, including network saturation: Raw
TPDU flood 55

Requirement TCP.R1 – Criteria for robustness test failure 27

Requirement TCP.R2 – Conditional test report notice of limited TCP robustness testability 28

Requirement TCP.R3 – Preconditioning of DUT, TD and any firewalls between the DUT and TD 28

Requirement TCP.R4 – Demonstration of baseline operation 28

Requirement TCP.R5 – Unpredictability of DUT’s initial sequence numbers 28

Requirement TCP.R6 – Equipment vendor disclosure of proprietary protocol extensions 29

Requirement TCP.R7 – Testing of each message field for sensitivity to invalid content 30

Requirement TCP.R8 – Constituent elements in basic robustness tests 30

Requirement TCP.R9 – Documentation of self-protective rate limiting behavior 31

Requirement TCP.R10 – Constituent elements in load stress tests 31

Requirement TCP.R11 – Testing of saturation rate-limiting mechanism(s) 31

Requirement TCP.R12 – Reproducibility of robustness testing 31

Requirement TCP.R13 – Ability to accept priority traffic 32

Requirement TCP.R14 – Handling of extermal port numbers 0 and 65535 32

Requirement TCP.R15 – Defense against inconsistent peer receive window edges 33

EDSA-406-2.01 6/56

Requirement TCP.R16 – Defense against peer dishonoring of the DUT’s TCP receive window
edges 33

Requirement TCP.R17 – Rejection of TCP connection attempts where the source IP address is an
IP address of the DUT 33

Requirement TCP.R18 – Resistance to SYN flood attacks 33

Requirement TCP.R19 – Resistance to attacks that leave connections open but unused 34

Requirement TCP.R20 – Resistance to attacks that spoof TCP flags 34

Requirement TCP.R21 – Defense against deliberately inconsistent and/or contextually-
inappropriate selective acknowledgment block edges when the DUT has negotiated
the use of the SACK option 35

Requirement TCP.R22 – Resistance to manipulation of timestamp values in a TS option 35

Requirement TCP.R23 – Overall reproducibility 36

Requirement TCP.R24 – Specific test cases 36

Requirement TCP.R25 – Testing SHALL include at least that specified by Table 6 through Table
30 36

EDSA-406-2.01 7/56

Foreword

NOTE This is one of a series of robustness test specifications for embedded devices. The full cu rrent list of documents related
to embedded device security assurance can be found on the web site of the ISA Security Compliance Institute,
http:/www.ISASecure.org.

1 Scope

This document is intended to provide requirements for testing the robustness of embedded device server
implementations of the IETF TCP protocol, as a measure of the extent to which such implemen tations
defend themselves against

 correctly formed messages and sequences of such messages;

 single erroneous messages; and

 inappropriate sequences of messages;

where failure of the device to continue to provide concurrent automation system control and reporting
functions, demonstrates potential security vulnerabilities within the device. This document is not intended
to serve as a guide for testing the correctness of implementations or conformance to mandatory
provisions of the controlling standard(s), which cannot be achieved solely by observing a device’s
response to external stimuli.

Requirements are comprised of all the numbered Requirements in this document and any immediately
following clarifying information, together with the tables in Clause 7 that describe individual tests. In the
event of a conflict between these, the tables in Clause 7 take precedenc e.

NOTE 1 The TCP protocol is stateful, with both server and client roles. Embedded devices usually implement primarily the
server role of TCP, though they may themselves need the client role for some management coordination functions.

NOTE 2 Although conformance is explicitly NOT a goal of this testing, prior versions of this document included some aspects of
conformance testing which have now intentionally been removed.

2 Normative references

This associated specification contains requirements common to this and similar robustness tests for
other protocols for embedded devices, including requirements on test configurations.

[EDSA-310] ISA Security Compliance Institute – Embedded device security assurance – Requirements
for embedded device robustness testing 1, as specified at http://www.ISASecure.org

NOTE 1 Within this document, references to specific subclauses of this normative reference are made through symbolic tags of
the form [CRT.Symbolic_tag]; the resolution of those tags is made in [EDSA-310], Table 1.

These publications of the Internet Engineering Task Force (IETF) are the controlling specifications for
the protocol whose robustness testing is the subject of this document:

NOTE 2 For each RFCnnn, the controlling version can be found at http://tools.ietf.org/html/rfcnnn.

[Port_numbers] IANA port numbers, as specified at http://www.iana.org/assignments/port-numbers

RFC793, Transmission control protocol

RFC1122, Requirements for internet hosts – communication layers

NOTE 3 Only 4.2 is referenced.

RFC1146, TCP alternate checksum options

RFC1191, Path MTU discovery

NOTE 4 Only 3.1 and 6.4 are referenced.

RFC1323, TCP extensions for high performance

1 to be published concurrently with this document

http://www.isasecure.org/
http://www.isasecure.org/
http://www.iana.org/assignments/port-numbers

EDSA-406-2.01 8/56

RFC1644, T/TCP -- TCP extensions for transactions - functional specification

RFC1693, An extension to TCP: Partial order service

RFC1812, Requirements for IP version 4 routers

NOTE 5 Only 6.2 is referenced, and then only for DUTs that also act as IP routers.

RFC2018, TCP selective acknowledgment options

RFC2385, Protection of BGP sessions via the TCP MD5 signature option

RFC2883, An extension to the selective acknowledgement (SACK) option for TCP

RFC2988, Computing TCP's retransmission timer

RFC3168, The addition of explicit congestion notification (ECN) to IP

NOTE 6 Only 6.1 is referenced, which adds the CWR and ECE flags and their procedure to TCP.

RFC3390, Increasing TCP's initial window

RFC5681, TCP congestion control

NOTE 7 Other IETF specifications related to the above can be found in the Bibliography.

RFC5482, TCP User Timeout Option

RFC5925, The TCP Authentication Option

RFC6247, Moving the Undeployed TCP Extensions RFC 1072, RFC 1106, RFC 1110, RFC 1145,
RFC 1146, RFC 1379, RFC 1644, and RFC 1693 to Historic Status

These publications of the Internet Engineering Task Force (IETF) are the controlling specifications for
two higher-layer protocols that can be used for testing the robustness of the TCP protocol that is the
subject of this document.

RFC862, Echo protocol

3 Definitions and abbreviations

3.1 Definitions

3.1.1
CC*
any of the TCP options CC, CCNEW or CCECHO

3.1.2
device under test
device that is being stimulated and observed during testing to demonstrate the characteristics and
behavior of the device when presented with the selected sequence of test stimuli

3.1.3
erroneous (message or PDU or option)
PDU that violates either syntactic rules on PDU structure or semantic rules on PDU content or both, or
PDU option that violates either syntactic rules on PDU option structure or semantic rules on PDU option
content or both

NOTE 1 Semantic and syntactic rule violations can interact, as when the value of one field determines the size of another field.

NOTE 2 The term erroneous includes syntactic malformation, semantically invalid values, and contextually invalid values and
sequences

NOTE 3 This is addressed further in [CRT.Terminology_of_Erroneous].

EDSA-406-2.01 9/56

3.1.4
“Ethernet”
either the IETF Ethernet II protocol or IEEE 802 SNAP over IEEE 802.2 Type 1 LLC over IEEE 802.3

3.1.5
fragmenting
function performed by IPv4 to map one unfragmented NPDU into multiple smaller fragmented NPDUs
before transmission

NOTE The equivalent OSI terms is segmenting, as specified in ISO/IEC 7498 1:1994, 5.8.1.9.

3.1.6
inferior (protocol)
protocol at a lower layer or sublayer than the referenced protocol

3.1.7
lower tester
tester that controls and observes a protocol layer implementation in a DUT through stimulus and
observation via lower protocol layers and a physical interconnection to the TD

NOTE This is the only type of testing used in the ISCI EDSA robustness tests.

3.1.8
malformed (message or PDU)
PDU that violates syntactic rules on PDU structure

NOTE This is addressed further in [CRT.Terminology_of_Erroneous].

3.1.9
reassembling
post-reception function performed by IP to reconstruct one unfragmented NPDU from multiple frag -
mented NPDUs

3.1.10
superior (protocol)
protocol at a higher layer or sublayer than the referenced protocol

3.1.11
testing device
conceptual single network-connected device, possibly consisting of multiple physical network -connected
devices, used to test the robustness of the device under test

NOTE This could be any programmable network-connected device capable of processing PDUs at the rate required for testing.

3.1.12
upper tester
tester that controls and observes a protocol layer implementation in a DUT through stimulus and
observation via a DUT-internal service interface between test software and the protocol layer under test

3.1.13
vulnerability
flaw or weakness in a system's design, implementation, operation, or management that could be
exploited to violate the system’s integrity or security po licy

3.2 Abbreviations

The following abbreviations are used in this document

ACK [TCP flag] acknowledgment field is significant

APDU application-layer protocol data unit

EDSA-406-2.01 10/56

CRT communication robustness testing

CWR [TCP flag] congestion window reduced

DPDU data-link-layer protocol data unit

DUT device under test

ECE [TCP flag] ECN echo

ECN explicit congestion notification

FIN [TCP flag] finish – sender has concluded sending data

FSM finite state machine

GPL gnu public license

IANA Internet assigned numbers authority

ICMP Internet control message protocol

IETF Internet engineering task force

IP Internet protocol (IETF network layer protocol)

IPv4 IP version 4 (uses 32-bit network layer addresses)

IPv6 IP version 6 (uses 128-bit network layer addresses)

NIST (U.S.) National Institute of Standards and Technology

(N)PDU (N-layer) protocol data unit, where N = D (data-link), N (network), T (transport),
A (application), etc

NPDU network-layer protocol data unit

PSH [TCP flag] push function, causes queued fragments to be transmitted as soon as possible

RFU reserved for future use

RST [TCP flag] reset the connection

STS statistical test suite

SYN [TCP flag] synchronize sequence numbers

TCP transmission control protocol

TD testing device

TPDU transport-layer protocol data unit

URG [TCP flag] urgent pointer field is meaningful

4 Elements of the protocol under test

4.1 General

This document specifies robustness testing for the IETF TCP protocol, which is a stateful transport
protocol providing an ordered, prioritizable, reliable end-to-end communications channel.

4.2 TCP TPDUs

4.2.1 TCP TPDU structure

A TCP TPDU is structured as shown in Figure 1, using a big-endian octet order.

EDSA-406-2.01 11/56

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

------- +-+

 | SourcePort | DestinationPort |

 H +-+

 | SequenceNumber |

 E +-+

 | AcknowledgmentNumber |

 A +-+

 | Data | |C|E|U|A|P|R|S|F| |

 D | Offset| RFU |W|C|R|C|S|S|Y|I| Window |

 | | |R|E|G|K|H|T|N|N| |

 E +-+

 | Checksum | UrgentPointer |

 R +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | varying-length Options (if any) |

 | (1B granularity, padded with 0x00 to a 4B multiple) |

------- +-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-+

D A T A | / varying-length Data (if any) / |

 | / (1B granularity, unpadded) / |

------- +-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-+

Figure 1 – TCP TPDU structure

4.2.2 Mandatory fields

The following fields are mandatory components of each TCP TPDU (where field sizes are specified in
octets (B) or bits (b)):

a) SourcePort (SP): (2B): source TCP-TSAP-identifier; default 0x0000. See [Port_numbers]

b) DestinationPort (DP): (2B): destination TCP-TSAP-identifier. See [Port_numbers]

c) SequenceNumber (SN): (4B): If SYN is reset, this field specifies the sequence number of the first
data octet in this PDU. If SYN is set, the sequence number (SN) is the initial sequence number (ISN)
and the first data octet is ISN+1.

d) AcknowledgmentNumber (AN): (4B): If ACK is set, this field specifies the next sequence number that
the sender of the PDU is expecting to receive. ACK is always set once a connection is established.

e) DataOffset (DO): (4b): Size of TCP header in 4B words, range 5..15

f) RFU: (4b): coded as zero on transmission; ignored on reception

g) TCP flags: (8b):

 CWR (1b): 1=Congestion window reduced (per RFC3168, 6.1)

 ECE (1b): 1=ECN echo (per RFC3168, 6.1)

 URG (1b): 1=Urgent pointer field is relevant

 ACK (1b): 1=Acknowledgment field is relevant

 PSH (1b): 1=Push function, causes queued fragments to be transmitted ASAP

 RST (1b): 1=Reset the connection

 SYN (1b): 1=Synchronize sequence numbers

 FIN (1b): 1=Sender has concluded sending data

h) Window (W): (2B): The number of data octets beginning with the one indicated in the acknowledg -
ment field (AF) that the sender of this PDU is willing to accept.

NOTE Thus the sender’s current acceptance window is data octets [AN .. AN+W-1] inclusive.

i) Checksum: (2B): unkeyed message integrity code. See 4.2.4.2

EDSA-406-2.01 12/56

j) UrgentPointer (UP): (2B): If URG is set, this field specifies the offset relative to SN of the last u rgent
data octet in this TPDU (per RFC1122, 4.2.2.4). In other words, when URG is set, urgent data is
present in the TPDU and this field specifies the zero-origin size of the urgent data.

NOTE The unstated presumption of the RFCs is that the urgent data occupies the first (UP+1) payload octets of the TPDU,
octets [SN .. SN+UP] inclusive, with the normal data occupying any remaining TPDU octets.

k) Options: (0B .. 40B length, granularity 1B, padded with bytes of 0x00 to a 4B boundary)

l) Data: (varying length ≥ 0B, granularity 1B, not padded to a multi-octet boundary)

4.2.3 Optional fields

TCP defines two types of option, each structured generically as shown in Figure 2, using a big-endian
octet order:

 +------+

single-octet option | Op # |

 +------+

 | 1B |

 +------+-----------------------------+--------------+

 multi-octet option | Op # | RemainingOptionLength (ROL) | RemainingData|

 +------+-----------------------------+--------------+

 | 1B | 1B | <ROL> B |

Figure 2 – Generic option structure

Seventeen specific options are defined for TCP, as shown in Error! Reference source not found. and Figure
4.

 EOS (1B): end-of-option-sequence, used to pad the Options field to a 4B multiple;

 PAD (1B): intra-option padding used to force a specific starting alignment of a subsequent option;

 MSSN (4B): maximum receive segment size for the sender, which is valid only when sent in the initial
connection request (e.g., when the SYN flag is set).

 WSN (3B): window scaling

 SACKN (2B): enable selective acknowledgements to specifying peer

 SACK (2+8n B): convey n selective acknowledgment intervals to peer

The following two options are deprecated, having been replaced by the TS option.

 ECHORQ (3B): request to peer to echo the specified option byte, thereby inducing peer transmission.

 ECHORP (3B): peer reply to receipt of an ECHORQ option.

 TS (10B): time sync

 POCR (2B): Partial order connection permitted

 POCSP (3B): Partial order connection service profile

 CC (4B): connection count, to support transaction-TCP

 CC.NEW (4B): same as CC, plus notifies peer to flush CC cache

 CC.ECHO (4B): echoes connection count of an initial SYN in a SYN+ACK TPDU

 ACR (3B): alternate checksum request, can select an 8-bit or 16-bit Fletcher checksum

 ACD (2+n B): alternate checksum data – conveys additional checksum data beyond the standard 3B

 MD5 (18B): uses an MD5 signature in lieu of a checksum

NOTE: The status of TCP options is summarized at
 https://www.ietf.org/mail-archive/web/tcpm/current/msg03199.html. TCP options not considered obsolete are found in RFC 6247

https://www.ietf.org/mail-archive/web/tcpm/current/msg03199.html

EDSA-406-2.01 13/56

 +-------+

 EOS | 0 |

 +-------+

 | 1B |

 +-------+

 PAD | 1 |

 +-------+

 | 1B |

 +-------+--------+----------------+

 MSSN | Type | Length | MaxSegmentSize |

 | (=2) | (=4) | |

 (RFC793) +-------+--------+----------------+

 | 1B | 1B | 2B |

 +-------+--------+--------------+

 ECHORQ| Type | Length | ConveyedData |

 | (=6) | (=6) | |

 (RFC1072) +-------+--------+--------------+

(deprecated)| 1B | 1B | 1B |

 +-------+--------+--------------+

 ECHORP| Type | Length | ConveyedData |

 | (=7) | (=6) | |

 (RFC1072) +-------+--------+--------------+

(deprecated)| 1B | 1B | 1B |

 +-------+--------+----------+---------------+

 TS | Type | Length | TS value | TS echo reply |

 | (=8) | 10 | | |

 (RFC1323) +-------+--------+----------+---------------+

 | 1B | 1B | 4B | 4B +

 +-------+--------+------------+

 WSN | Type | Length | ShiftCount |

 | (=3) | (=3) | |

 (RFC1323) +-------+--------+------------+

 | 1B | 1B | 1B |

 +-------+--------+

 SACKN | Type | Length |

 | (=4) | (=2) |

 (RFC2018) +-------+--------+

 | 1B | 1B |

 +-------+--------+--------------+-------------+---//----+

 SACK | Type | Length | Left Edge 1 | Right Edge 1| |

 | (=5) | 2+4n | (repeating substructure) | ... |

 (RFC2018) +-------+--------+--------------+-------------+---//----+

 | 1B | 1B | 2B | 2B + 4(n-1)B +

 +-------+--------+

 POCR | Type | Length |

 | (=9) | (=2) |

 (RFC1693) +-------+--------+

 (obsolete) | 1B | 1B |

Figure 3 – Specific option structure (1/2)

EDSA-406-2.01 14/56

 POCSP | Type | Length | Flags |

 | (=10) | (=3) | |

 (RFC1693) +-------+--------+-------+

 (obsolete) | 1B | 1B | 1B |

 +-------+--------+-----------------+

 CC | Type | Length | ConnectionCount |

 | (=11) | (=6) | |

 (RFC1644) +-------+--------+-----------------+

 (obsolete) | 1B | 1B | 4B |

 +-------+--------+-----------------+

 CCNEW | Type | Length | ConnectionCount |

 | (=12) | (=6) | |

 (RFC1644) +-------+--------+-----------------+

 (obsolete) | 1B | 1B | 4B |

 +-------+--------+-----------------+

 CCECHO| Type | Length | ConnectionCount |

 | (=13) | (=6) | |

 (RFC1644) +-------+--------+-----------------+

 (obsolete) | 1B | 1B | 4B |

 +-------+--------+--------------+

 ACR | Type | Length | checksumType |

 | (=14) | (=3) | |

 (RFC1146) +-------+--------+--------------+

 (obsolete) | 1B | 1B | 1B |

 +-------+--------+----------+

 ACD | Type | Length | checksum |

 | (=15) | (=2+n) | |

 (RFC1146) +-------+--------+----------+

 (obsolete) | 1B | 1B | nB |

 +-------+--------+--------+

 MD5 | Type | Length | Digest |

 | (=19) | (=16) | |

 (RFC2385) +-------+--------+--------+

 (obsolete) | 1B | 1B | 14B |

 +-------+--------+-----------------+

 UTO | Type | Length | TimeoutInterval |

 | (=28) | 4 | |

 (RFC5482) +-------+--------+-----------------+

 | 1B | 1B | 2B +

 +-------+--------+--------+-----------++--------+

 TCP-AO | Type | Length | KeyID | RNextKeyID | MAC |

 | (=29) | 4+n | | | |

 (RFC5925) +-------+--------+-------+------------+---------+

 | 1B | 1B | 1B | 1B | nB |

Figure 4 – Specific option structure (2/2)

The MSSN option is only meaningful when the SYN flag is set in the same TCP TPDU. It is required that
both sender and receiver support this option, and that this option be used when the desired MSSN value
differs from the default of 536 B (per RFC1122, 4.2.2.6 and RFC1191, 3.1).

EDSA-406-2.01 15/56

4.2.4 Mandatory protocol aspects

4.2.4.1 Conveying IP NPDU

TCP fixes the value of one of the header fields of any conveying IP NPDU.

 For IPv4, the NPDU header SHALL specify the TCP protocol in its ProtocolType field:

 ProtocolType: 0x06 (TCP)

 For IPv6, the last header in the NPDU SHALL specify the TCP protocol in its NextHeader field:

 NextHeader: 0x06 (TCP)

TCP specifies that some options of the conveying IP NPDU, such as Source Route, are to be passed to
TCP, which is then to use the reverse route from that Source Route option for all future transmissions to
the remote peer (per RFC1122, 4.2.3.8).

4.2.4.2 Checksum procedure

The checksum field is the 16-bit one's complement of the one's-complement sum of all 2 B words, in
big-endian octet order, in a virtual TCP TPDU created by prefixing the actual TPDU by a pseudo-header
consisting of extra 4 B words. The pseudo-header for use with IPv4 is shown in Figure 5; the pseudo-
header for use with IPv6 is shown in Figure 6.

Each pseudo-header contains the Source IP Address; the Destination IP Address; the IP protocol ID for
TCP (0x06), which in IPv6 is used as the value of the NextHeader field of the last header in the IPv6
NPDU; and the length in octets of the conveyed TCP TPDU. Together these give the TCP TPDU some
protection against being reconstructed from misrouted fragmented NPDUs.

NOTE This pseudo-header information is carried in the IP NPDU and is transferred across the Transport/Network layer service
interface.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source IPv4 Address |

+-+

| Destination IPv4 Address |

+-+

| 0x00 | 0x06 | TCP TPDU length per NL |

+-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-+

| varying-length TCP TPDU of Figure 1 |

| (padded with zero to a 2B boundary) |

+-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-+

Figure 5 – Virtual TCP over IPv4 TPDU used for checksum computation

EDSA-406-2.01 16/56

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

+- -+

| |

+- Source IPv6 Address -+

| |

+- -+

| |

+-+

| |

+- -+

| |

+- Destination IPv6 Address -+

| |

+- -+

| |

+-+

| TCP TPDU length per NL |

+-+

| 0x000000 | 0x06 |

+-+

| varying-length TCP TPDU of Figure 1 |

| (padded with zero to a 2B boundary) |

+-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-/-+-+-+-+-+-+-+-+

Figure 6 – Virtual TCP over IPv6 TPDU used for checksum computation

If a TCP TPDU contains an odd number of octets to be checksummed, an octet of zeros is appended
when forming the virtual TCP TPDU that is used for checksum computation, to ensure an integral number
of 2B words, as shown in Figure 5 and Figure 6. Within the virtual TCP TPDU, while computing the
checksum, the checksum field of the contained varying-length TCP TPDU is set to zero.

The TCP TPDU length in the third 4B word of the virtual header is the length of the TPDU as presented
to or reported by the associated network layer. This is typically the TCP header length plus the computed
data length in octets, not counting the extra prefix or padding suffix octets of the virtual TCP TPDU.

4.2.4.3 TCP state machine

The state machine for TCP is shown in Figure 7, with transitions as listed in Table 1.

NOTE 1 This state machine includes all amendments from RFCs updating TCP.

NOTE 2 An alternative more-readable state machine can be found at:
http://www4.informatik.uni-erlangen.de/Projects/JX/Projects/TCP/tcpstate.gif

http://www4.informatik.uni-erlangen.de/Projects/JX/Projects/TCP/tcpstate.gif

EDSA-406-2.01 17/56

 ________ g ________

 h | |<------------| |

-->| CLOSED |------------>| LISTEN |

 |________| ------|________|

 | ^ / ^ |

 | ------- / | |

 | \/ | |

 a| a'/\ b’| b|

 | / \T’ | |

 | / \ | |

 | / \ c’ | |

 | / -------------|---|----------|

 | / / \ | | |

 __V___V_ / \ ___|___V __V_____ ________

 | SYN- | b | SYN- | c |ESTAB- | e | CLOSE- |

 | SENT |---------->|RECEIVED|----->| LISHED|----------------->| WAIT |

 |________| |________| |________| |________|

 | | |

 d| d| d|

 | | |

 | ______V_ ____V___ ___V____

 | | FIN- | e | | | LAST- |

 --------->| WAIT-1 |------->|CLOSING | | ACK |

 |________| |________| |________|

 | \ | |

 | \ e’ | |

 f| ------ f| f'|

 | \ | |

 ___V____ V___V___ ___V____

 | FIN- | e |TIME- | T | |

 | WAIT-2 |----->| WAIT |---->| CLOSED |

 |________| |________| |________|

Figure 7 – TCP state machine

Table 1 – TCP state machine transitions

Label Event Action

a active application OPEN create TCB, send SYN

a' active application OPEN send SYN

b receive SYN send SYN,ACK(SYN)

b’ receive RST —

c receive ACK(SYN) —

c' receive SYN,ACK(SYN) send ACK

d application CLOSE send FIN

e receive FIN send ACK(FIN)

e' receive FIN,ACK send ACK(FIN)

f receive ACK(FIN) —

f' receive ACK(FIN) delete TCB

g application CLOSE delete TCB

h passive application OPEN create TCB

T timeout=2MSL delete TCB

T’ timeout=2MSL send RST, delete TCB

EDSA-406-2.01 18/56

The full state machine for the transactional version of TCP described in RFC1644 is shown in Figure 8,
with the corresponding transitions shown in Table 2. As noted in the footnote to Figure 8 and its state
transition table, the T/TCP state machine is really just an augmented version of Figure 7 and Table 1,
where that augmentation consists of adding a single Boolean variable to the state to track w hether a SYN
or FIN (depending on the base state) still needs to be sent to the TCP peer.

 ________ g ________

 | |<------------| |

 | CLOSED |------------>| LISTEN |

 |________| h ------|________|

 | / | |

 | / i| j|

 | / | |

 a| a'/ | _V______ ________

 | / j | |ESTAB- | e' | CLOSE- |

 | / -----------|-->| LISHED*|------------>| WAIT*|

 | / / | |________| |________|

 | / / | | | | |

 | / / | | c| d'| c|

 ____V_V_ / _______V | __V_____ | __V_____

 | SYN- | b' | SYN- |c | |ESTAB- | e | | CLOSE- |

 | SENT |------>|RECEIVED|---|->| LISHED|----------|->| WAIT |

 |________| |________| | |________| | |________|

 | | | | | |

 | | | | __V_____ |

 | | | | | LAST- | |

 d'| d'| d'| d| | ACK* | |

 | | | | |________| |

 | | | | | |

 | | ______V_ | ________ |c' |d

 | k | | FIN- | | e''' | | | |

 | -------|-->| WAIT-1*|---|------>|CLOSING*| | |

 | / | |________| | |________| | |

 | / | | | | | |

 | / | c'| | c'| | |

 ___V___ / ____V___ V_____V_ ____V___ V____V__

 | SYN- | b'' | SYN- | c | FIN- | e'' | | | LAST- |

 | SENT* |---->|RECEIVD*|---->| WAIT-1 |---->|CLOSING | | ACK |

 |________| |________| |________| |________| |________|

 | | |

 f| f| f'|

 ___V____ ____V___ ___V____

 | FIN- | e |TIME- | T | |

 | WAIT-2 |---->| WAIT |-->| CLOSED |

 |________| |________| |________|

LEGEND

 SYN-SENT* and SYN-RECEIVED* (shown in the figure at SYN-RECEIVD*) differ from the SYN-SENT and SYN-RECEIVED
state, respectively, in recording the fact that a FIN needs to be sent. The other starred states – ESTABLISHED*, LAST-ACK*,
FIN-WAIT-1*, CLOSING* – indicate that the connection is half -synchronized (i.e., that a SYN needs to be sent).

NOTE This FSM can be replaced by that of Figure 7 through addition of a starredState auxiliary Boolean variable to that FSM,
with additional same-state transitions where required to go from starred to unstarred status.

Figure 8 – T/TCP state machine

EDSA-406-2.01 19/56

Table 2 – T/TCP state machine transitions

Label Event Action

a active OPEN create TCB, send SYN

a' active OPEN send SYN

b receive SYN [no TAO] send ACK(SYN)

b' receive SYN [no TAO] send SYN,ACK(SYN)

b'' receive SYN [no TAO] send SYN,FIN,ACK(SYN)

c receive ACK(SYN) —

c' receive ACK(SYN) send FIN

d CLOSE send FIN

d' CLOSE send SYN,FIN

e receive FIN send ACK(FIN)

e' receive FIN send SYN,ACK(FIN)

e'' receive FIN send FIN,ACK(FIN)

e''' receive FIN send SYN,FIN,ACK(FIN)

f receive ACK(FIN) —

f' receive ACK(FIN) delete TCB

g CLOSE delete TCB

h passive OPEN create TCB

i (= b') receive SYN [no TAO] send SYN,ACK(SYN)

j receive SYN [TAO OK] send SYN,ACK(SYN)

k receive SYN [TAO OK] send SYN,FIN,ACK(SYN)

T timeout=2MSL delete TCB

4.2.4.4 Sequencing concepts

4.2.4.4.1 General

Sequence numbers are unsigned 32-bit values, for which all arithmetic and comparison operations are
modulo 232. Concepts of “less than” and “greater than” are with respect to the ari thmetic difference of
two unsigned 32-bit values, when that difference is interpreted as a signed two’s -complement 32-bit
value:

 “less than” means that the difference has an apparent negative value;

 “greater than” means that the difference has an apparent non-zero positive value.

Table 3 lists the conceptual state variables associated with a TCP connection, and the associated
variables conveyed as implicit or explicit parameters of a TCP TPDU.

NOTE The structured names of most of these variables are identical to those specified in RFC793. However, those variable
names in RFC793 which were inconsistent with the rest have been renamed to follow the SND and RCV and SEQ component
structuring of the other names.

EDSA-406-2.01 20/56

Table 3 – TCP connection: Conceptual state and TPDU variables

Variable name Use

Send sequence variables

SND.RRSS remote receive segment size (negotiated option)

SND.UNA send unacknowledged

SND.NXT send next

SND.WND send window

SND.UP send urgent pointer

SND.WUSN segment sequence number used for last window update

SND.WUAN segment acknowledgment number used for last window update

SND.ISN initial send sequence number

Receive sequence variables

RCV.RSS receive segment size (negotiated option)

RCV.NXT receive next

RCV.WND receive window

RCV.UP receive urgent pointer

RCV.ISN initial receive sequence number

Current segment variables

SEG.SEQ sequence number of first octet of segment

SEG.ACK
segment acknowledgment number –
next SEG.SEQ expected by receiver

SEG.LEN segment length

SEG.WND segment window

SEG.UP segment urgent pointer

SEG.PRC segment precedence value

4.2.4.4.2 TCP connection sequencing concepts and constraints

NOTE These constraints are from RFC793.

The payload octets of a TCP TPDU convey both APDU data for the application protocol associated with
the specified ports of the TCP connection. When present, the SYN and FIN flags each occupy one octet
of the TCP connection’s sequence number space, but without being represented by distinct octets of the
TPDU. The non-present SYN octet is assigned the first sequence number of the connection, with the first
actual TPDU payload octet assigned the next sequence number. Similarly, the non-present FIN octet is
assigned the last sequence number of the connection, after the sequence number of the last octet of
actual TPDU payload, if any. Thus

 SEG.LEN = SIZEOF(TPDU) – (TPDU.DataOffset 4) + TPDU.SYN + TPDU.FIN , where the latter two f lags are considered
1-bit unsigned integer values

 SEG.SEQ + TPDU.SYN (modulo 232) = sequence number of first payload octet, if any, of a segment

 SEG.SEQ + SEG.LEN
–
 TPDU.FIN

–
 1 (modulo 232) = sequence number last payload octet, if any, of a segment

 SEG.SEQ + SEG.LEN
–
 1 (modulo 232) = last sequence number of a segment

A new acknowledgment (called an "acceptable ack"), is one for which the inequality below holds:

 SND.UNA < SEG.ACK ≤ SND.NXT (modulo 232)

A segment on the retransmission queue is fully acknowledged if the sum of its sequence number and
length is less than or equal to the acknowledgment value in the received segment.

 A segment is judged to occupy a portion of valid receive sequence space if

EDSA-406-2.01 21/56

 RCV.NXT ≤ SEG.SEQ < RCV.NXT + RCV.WND (modulo 232)

or

 RCV.NXT ≤ SEG.SEQ+SEG.LEN – 1 < RCV.NXT + RCV.WND (modulo 232)

Actually, due to zero window sizes and zero length segments, there are four cases for the acceptability
of a received segment, as enumerated in RFC793 and Table 4:

Table 4 – TCP connection: Acceptability of a received segment

Segment receive test

Length Window Action (modulo 232)

0 0 SEG.SEQ = RCV.NXT

0 >0 RCV.NXT ≤ SEG.SEQ < RCV.NXT + RCV.WND

>0 0 not acceptable

>0 >0
RCV.NXT ≤ SEG.SEQ < RCV.NXT + RCV.WND
 or
RCV.NXT < SEG.SEQ + SEG.LEN ≤ RCV.NXT + RCV.WND

NOTE The above set of cases from RFC793 exclude the case

>0 >0
SEG.SEQ < RCV.NXT
 and
RCV.NXT + RCV.WND < SEG.SEQ + SEG.LEN

where the received segment spans and extends beyond both sides of the receive window

When the receive window is zero, only segments containing a set ACK flag SHALL be accepted. T hus, it
is possible for a TCP connection to maintain a zero receive window while transmitting data and receiving
ACKs. However, even when the receive window is zero, a TCP connection SHALL continue to process
the RST, URG and FIN fields of all received segments.

The sequence-numbering scheme for TPDU payload octets also is used to protect certain control
information, by implicitly including some control flags (when set) in the sequence space so that they can
be retransmitted and acknowledged without confusion (i.e., one and only one copy of the control will be
acted upon). Control information is not carried physically as segment data, but it occupies sequence
space. SYN and FIN are the only controls requiring this protection, and these controls are i ntended for
use only at connection opening and closing. For sequence number purposes, SYN is considered to occur
as a virtual control octet immediately before the first actual data octet of the segment in which the SYN
flag is set, while FIN is considered to occur as a virtual control octet immediately after the last actual
data octet of the segment in which the FIN flag is set. In either case, the resulting segment length
(SEG.LEN) includes both data and control sequence space. When a SYN is present then SEG.SEQ is
the sequence number of the SYN, not of the first (if present) data octet of the segment.

4.2.5 Elements of procedure: Connection establishment via 3-way handshake

TCP connections are established via a 3-way protocol “handshake”. Classic attacks on TCP servers
attempt to get the server to allocate state variables when responding to the first phase of the
“handshake”, receipt of a TPDU with the SYN flag set while the server is in a LISTEN state. Techniques
have been developed to encode enough of the server state in the initial sequence number returned by
the server in the TPDU that represents the second phase of the “handshake”, which is expected to be
returned by the requesting client during the third phase of the “handshake”; this permits the server to
defer allocation of resources to the connection until after receipt of the TPDU representing that final third
of the “handshake”. To avoid spoofing, this information SHOULD be encoded via an algorithm resistant
to attacker analysis and prediction.

An embedded device implementation of TCP server functionality SHOULD include such protective
measures; any implementation that does not is trivially vulnerable to resource depletion attacks, where

EDSA-406-2.01 22/56

an attacker initiates many connections but leaves them “half -open” by never completing the third phase
of the “handshakes”.

4.2.6 Optional TPDU components and elements of procedure

4.2.6.1 General

The only optional TPDU components are the options of the TCP option field.

4.2.6.2 Receiver maximum segment size

RFC793 specifies a mechanism for increasing or decreasing the default receiver segment size.

The MSSN option MAY be notified only when the TCP TPDU’s SYN flag is set, and SHOULD NOT be
present when the SYN flag is reset. Receiver support of this option is mandatory.

4.2.6.3 TCP echo (deprecated for timestamp use)

RFC1072 specifies an optional mechanism for sending a short 4B string such as a TCP timestamp on a
TCP connection. When used as a timestamp, this mechanism was replaced by that of 4.2.6.4, so
SHOULD NOT be employed by software designed after 1995. However, this mechanism can echo more
than timestamps; for any other echo purpose its use is not deprecated.

4.2.6.4 Timestamp

RFC1323 specifies an optional low-overhead mechanism for providing a measurement of current round-
trip communications delay on a TCP connection, for use in dynamic adjustment of retransmission timers.
Any sender-originated timestamp value SHALL be the low-order octets of a monotonic clock of the
sender’s that progresses approximately linear ly with time.

4.2.6.5 Window scaling

RFC1323 specifies an optional mechanism for increasing the number of bytes that a TCP connection
may have in transit, unacknowledged. The TCP option WSN notifies the TCP peer

 that the sending peer supports window scaling, and

 of a non-negative binary scale factor by which the receiving peer should multiply the receive
window edge value(s) found in a TCP header to obtain the true receive window boundaries.

After notification from the TCP peer, a receiving TCP entity augments its receive state variables of Table
3 with an additional scaling state variable. Similarly, the notifying peer augments its sending state
variables with a corresponding scaling state variable.

The WSN option MAY be notified only when the TCP TPDU’s SYN flag is set, and SHOULD NOT be
present when the SYN flag is reset. Notification of option use is unilateral, not requiring the peer TCP
entity's consent.

4.2.6.6 Selective acknowledgment

RFC2018 specifies an optional mechanism for acknowledging segments of the TCP transmission stream
while earlier-occurring segments remain unacknowledged, potentially requiring retransmission. After
notification from the TCP peer (via a SACKN option), a sending TCP entity augments the state variables
of Table 3 with additional information to track which non-continuous segments, if any, of the receive
window have been acknowledged.

The SACKN option MAY be notified only when the TCP TPDU’s SYN flag is set, and SHOULD NOT be
present when the SYN flag is reset. Once notified, the SACK option SHOULD be included by the
acknowledging TCP peer in all ACK TPDUs which do not acknowledge the highest sequence number in
the acknowledger’s receive queue. If a TCP peer has not received a SACKN option from its re mote peer
in a TPDU with the SYN flag set, it SHALL NOT send TPDUs containing the SACK option.

EDSA-406-2.01 23/56

Notification of option use is unilateral, not requiring the peer TCP entity's consent.

4.2.6.7 Partially ordered connection (experimental, obsolete)

RFC1693 specifies an experimental mechanism for delivering segments of a TCP transmission stream in
a different order than the originated by the peer TCP entity, After bilateral negotiation via TPDUs with the
SYN flag set, containing the POCR request/reply option, either TCP peer MAY augment some TPDUs
with begin-profile and end-profile markers (via the POCSP option), indicating that the infix of the TCP
transmission stream whose first and last segment(s) are so marked contains a partially -order-connection
service profile.

Negotiation of option use is bilateral, requiring the peer TCP entity's consent via a returned POCR
option.

NOTE The details of the conveyed partial order service profile(s) appear to be unspecified in the RFC. Hence it is unlikely that
any DUT will implement this option.

4.2.6.8 Transaction support (experimental, obsolete)

RFC1644 specifies an experimental mechanism for supporting a series of rapidly established and
released TCP connections between the same pair of peer TCP entities. The basic TCP FSM of Figure 7
can be retained by the addition of a starredState Boolean variable to the FSM, effectively embodying the
FSM of Figure 8 and the extended state transition table of Table 2.

The TCP options CC and CCNEW notify a receiving TCP entity that the sending entity wishes to start or
continue a sequence of rapidly opened and closed TCP connections. If the receiv ing TCP peer agrees
and has cached state from a recent such connection with the corresponding TCP entity, it includes a CC
or CCECHO option in its reply and makes the accelerated transitions in its FSM; otherwise it behaves as
if the CC/CCNEW had not been received.

The transaction support option (known as CC for Connection Counter) MAY be notified only when the
TCP TPDU’s SYN flag is set, and SHOULD NOT be present when the SYN flag is reset. Once notified, a
CC or CCECHO option SHOULD be included by both TCP peers in all TPDUs on the connection. If a
TCP peer has not received a CC/CCNEW option from its remote peer in a TPDU with the SYN flag set, it
SHALL NOT send non-SYN TPDUs containing any of the CC options.

Effective use of the transaction support capabi lity requires bilateral agreement between the TCP peers.

4.2.6.9 Alternate checksum (experimental, obsolete)

RFC1146 specifies an experimental mechanism for specifying and conveying alternate TPDU checksums
as replacements for the standard TCP checksum conveyed in the TCP TPDU header. After bilateral
negotiation via TPDUs with the SYN flag set, containing the ACR request/reply option, and if the two
conveyed ACR options specified identical checksum algorithms, then each TCP peer uses that algorithm
for the remainder of the TCP connection. If that algorithm provides a checksum of more than 2B, then
each TPDU not containing an ACR option SHALL contain an ACD option to convey that portion of the
checksum that is not conveyed in the TCP TPDU’s header’s checksum field.

Negotiation of use of a checksum algorithm other than the default TCP checksum algorithm is bilateral,
requiring the peer TCP entity's consent via a returned ACD option specifying the same alternate
checksum algorithm.

4.2.6.10 MD5 signature (obsolete)

RFC2385 specifies an optional mechanism for protecting TCP TPDUs with a somewhat weak message
digest provided as a digital signature. When required by a TCP peer, TPDUs not containing an MD5
signature, or containing one that does not validate when using the presumably shared message digest
postfix string, are ignored. Although the preceding discussion indicates that selection of this option is
bilateral, its selection is by means other than TCP option negotiation and so is not addressed here.

NOTE The initial focus of the MD5 signature mechanism was protection of TCP connections for BGP sessions. Presumably, a
host requiring this option for message acceptance will not be encountered during EDSA robustness testing.

EDSA-406-2.01 24/56

4.2.6.11 User timeout

RFC5482 specifies an optional user timeout different than the default TCP timeout of the device. The
option involves both advertisement of the capability and enabling the action. See the RFC for details.

4.2.6.12 Authentication option

RFC5925 specifies the use of cryptographic message authentication codes (MACs) as message digests
in support of TPDU integrity and to defend against replay attacks. See the RFC for details.

4.3 Mandatory and optional protocol features

The mandatory features of the TCP protocol are

M1) The TPDU SHALL include the entire TCP header (e.g., a minimum of 20 octets, plus any option-
field octets as specified by the value of the TPDU’s Data Offset field).

M2) The TPDU’s Data Offset field SHALL have a value between 5 and 15, inclusive.

M3) The TPDU’s Destination port field SHALL specify a port associated with the intended application
protocol, and not a reserved port per http://www.iana.org/assignments/port-numbers.

M4) A computed checksum that has the value zero SHALL be represented in the TCP header as
-0 (minus zero, 0xFFFF).

M5) TPDUs received with a checksum value that differs from a checksum computed equivalently across
the virtual TCP TPDU of Figure 5 or Figure 6, as appropriate, (after virtually zeroing the TPDU’s
checksum field), SHALL be discarded.

NOTE 1 TPDUs received with a checksum value of +0 (plus zero, 0x0000) always are erroneous.

M6) TCP SHALL pass IP-layer options semi-transparently between the network and application layers,
per RFC1122, 4.2.3.8. IP-layer source routing options SHALL be used to determine return routes ,
and updated source routes SHALL update the return routes, per RFC1122, 4.2.3.8.

M7) TCP SHALL pass to its associated application user all ICMP error messages it receives from the
network layer, per RFC1122, 4.2.3.9.

M8) A received TCP TPDU whose source address is an IP multicast or broadcast address SHALL be
discarded without notification, per RFC1122, 4.2.3.10.

M9) A received TCP TPDU whose source address is an IP address of the receiving device SHOULD be
discarded except during deliberate loopback testing.

M10) A TCP server SHALL support congestion control as specified by RFC2988 and RFC5681.

M11) The MSSN option of 4.2.6.2 shall be supported on receipt.

M12) A received MSSN, WSN, SACKN, POCR or ACR option SHALL be ignored when the TPDU’s SYN
flag is reset.

M13) A received SACK, POCSP, ACD, MD5 or CC* option SHALL be ignored when the TPDU’s SYN flag
is reset unless use of the option was previously negotiated or permitted by TPDUs of the same
TCP connection whose SYN flag was set.

M14) A TCP server that supports one or more of the ECHORQ/ECHORP, TS, WSN, SACKN/SACK,
POCR/POCSP and CC* groups of related options SHALL conform to the requirements of the
relevant RFCs. For example, when the TS option is employed, the sender SHALL origin ate
timestamp values based on a monotonic clock that progresses approximately linearly with time, in
accordance with RFC1323. Also for example, when a device supports the WSN option, it SHALL
include the WSN option in TCP TPDUs in which the SYN flag is set , whether or not the sending
device itself has a need to employ that option.

The optional features of the TCP protocol are

C1) The initial sequence number of a TCP connection, provided during the initial connection
“handshake”, SHOULD be a 32-bit value that is unpredictable to an attacker.

http://www.iana.org/assignments/port-numbers

EDSA-406-2.01 25/56

NOTE 2 RFC793, 3.3 required that initial sequence numbers be based on a pseudo-clock. RFC1122, 4.2.2.9 repeated
this requirement. This proved to be an assist to attackers, enabling spoofed connections, so modern impleme ntations
revise this requirement to one of sequence number unpredictability.

C2) A TCP server SHOULD defer allocating state until it receives the 3rd phase TPDU of a TCP
connection request, encoding a keyed hash of the requesting remote IP address and remo te port
as the server’s initial sequence number returned in the 2nd TPDU, so that the 3rd phase TPDU
can be validated if it is received, after which the server’s TCP state for the connection can be
allocated.

NOTE 3 Use of the CC or CCNEW option accelerates the timing of this 3rd phase during TCP connection establishment.

C3) A TCP server MAY support one or more of the ECHORQ/ECHORP, TS, WSN, SACKN/SACK,
POCR/POCSP and CC* groups of related TCP options.

C4) A TCP server that supports the related SACKN/SACK options SHOULD conform to RFC2883 and,
where non-contradictory, RFC2018.

C5) A TCP server MAY comply with RFC3390 and/or RFC2385.

5 Elements of other protocols required for the testing

5.1 Protocol(s) from inferior layers used by this protocol

The TCP protocol of RFC768 is specified to operate over IPv4, because the virtual TCP TPDUs of Figure
5 uses information from the conveying IPv4 NPDU. The destination-unreachable, time-exceeded and
parameter-problem ICMP error PDUs of RFC792 (as amended) are used to report error conditions in
received TCP TPDUs that are detected by the DUT’s TCP implementation.

NOTE For TCP robustness testing, there is no requirement for the DUT to be able to receive ICMP PDUs, or to transmit ICMP
PDUs of types other than the three just enumerated.

RFC2460, 8.1 specifies how TCP is adapted to work over IPv6, by using the replacement virtual TCP
TPDU of Figure 6 that uses information from the conveying IPv6 NPDU. For IPv6, RFC4443 (as
amended) is the corresponding controlling ICMP specification.

5.2 Protocol(s) from superior layers used to test this protocol

5.2.1 General

In principle, any DUT-implemented TCP-based server protocol that provides an APDU pseudo-echo
facility can be used to explore the ability of the DUT’s TCP implementation to withstand attack. In this
specification, the TCP Echo server protocol on port 7 (RFC862) is used to cause the DUT to have
outstanding unacknowledged transmissions, which provides a basis for testing the robustness to attack
of that part of the DUT’s TCP sequence number logic that would be otherwise shielded from attack .

If the TCP Echo server protocol is not available within the DUT, then robustness testing of the DUT’s
TCP implementation is limited to attempts to hang the DUT without interacting with the DUT, which
exposes only a fraction of the DUT’s potential vulnerabilities to attack . In such a case, where the TCP
Echo server protocol is not available within the DUT, the test results SHALL state that fact, and that as a
consequence robustness of the DUT’s TCP implementation to sequence -number-based attacks was only
partially testable.

EDSA-406-2.01 26/56

6 Robustness testing

6.1 Goals that drive testing requirements

The goal of the tests described in this document is to assess:

a) the robustness of an embedded control device with an implemented set of protocols, and

b) the device’s resistance to attack, including the impact on the device’s reporting and control functions
while sustaining such an attack.

It is not a goal to determine the correctness of the implementation of those protocols, which would be a
measure of their conformance to the requirements of the various protocol specifications.

This atypical testing goal interacts with vendor decisions to provide only partial implementations of
protocols that are used within a proprietary or constrained context, such that those implementations are
completely functional within the usage limits imposed by that context but are not conformant to the
mandatory requirements of the controlling protocol standard.

As described by specific requirements in [EDSA-310], the consequent requirement is for this testing to

1) ascertain whether the DUT and other parts of the test configuration meet normal operational
expectations before testing commences;

2) determine whether the DUT can survive receipt of invalid frames while continuing to function as
expected in an automation environment; and

3) determine whether the DUT can sustain intervals of high and excessive communications load .

6.2 Testing overview

The DUT must be preconditioned to support testing by

1) meeting the requirements of [EDSA-310] for demonstrating continued correct operation during
testing;

2) unblocking the TCP Echo server protocol (port 7) if that is blocked in the DUT’s default operating
configuration.

Robustness testing occurs in three conceptual phases that may overlap, plus a test environment
preconditioning phase.

The first conceptual phase, Baseline operation, attempts to demonstrate that the selected DUT
protocol suite used for testing appears to operate properly for simple test cases under low network
communications load, before any protocol fuzzing or stress testing is attempted.

NOTE 1 This initial demonstration of apparently correct behavior establishes the presumption that failure during additional
testing is due to vulnerabilities of the specific protocol under test, rather than other protocols in the test sui te.

c) The second conceptual phase, Basic robustness testing, probes the implementation for its ability to
not evidence harm due to receipt of arbitrary erroneous frames, either singly or in combination . For
stateful protocols, this phase also tests the response of the implementation to various state-
dependent proper and improper sequences of PDUs.

NOTE 2 This conceptual phase focuses on simple protocol robustness/fuzzing tests.

d) The third conceptual phase, Load stress testing, probes the implementation’s response to high traffic
rates incorporating valid PDUs. For stateful protocols, this phase also tests the response of the
implementation to various state-dependent proper and improper sequences of PDUs.

NOTE 3 This conceptual phase focuses on load/performance tests, first under high but supposedly sustainable receiver
network communications load, then under massive overload.

Although the robustness testing of this specification is conceptualized as occurring in distinct logical
phases that progress from simple single-factor testing to more complex load testing incorporating PDUs
with varying characteristics, there is no requirement that an actual robustness test process work in this

EDSA-406-2.01 27/56

ordered, sequential manner; any order of testing is permitted provided that the selected order does not
lead to incorrect conclusions about robustness.

Requirement TCP.R1 – Criteria for robustness test failure

Pass or fail of basic robustness and load stress testing SHALL be determined by:

 whether or not essential functions are adequately maintained under network traffic conditions created
under these tests, as defined in [CRT.Essential_functions];

 any particular conditions resulting in pass/fail mandated by the testing specified in this document.

The TCP protocol that is the subject of this specification is a stateful protocol with a simple triggered -
reply mechanism. Some robustness testing of a TCP implementation, particularly of the DUT’s res ponse
to erroneous acknowledgments of DUT transmissions, requires use of a higher -layer protocol with its
own transaction or query/response mechanisms which use TCP as a lower -level transport protocol.

Since some TCP protocol behavior can be observed only when the DUT responds to received TCP
TPDUs and communicates application data, that higher-layer protocol must be one for which the DUT
acts as a server, responding to remote-originated TCP TPDU requests. Thus primary testing of the
DUT’s TCP implementation is achieved through use of specialized TCP Echo protocol APDUs, which are
conveyed by TCP TPDUs to the DUT, and the DUT’s responses.

6.3 Protocol stack used for testing

6.3.1 Protocol(s) from inferior layers used by this protocol

IP is used to convey TCP TPDUs. The virtual TCP TPDU of Figure 5 or Figure 6 uses information from
the conveying IP NPDU. Although this specification presumes that IPv4 NPDUs are being conveyed by
“Ethernet” DPDUs, other means of conveying TCP TPDUs are not inherently precluded.

The initial EDSA CRT tested protocols include IPv4 rather than IPv6 or other networking protocols. The
version of TCP specified in RFC793 (as amended) and tested under this test specification is TCP over
IPv4 – that selection impacts the address field values used in the calculation of the TCP checksu m. This
document also specifies the necessary adaptation of test implementations of TCP that operate over IPv6.

6.3.2 Protocol(s) from superior layers used to test this protocol

TCP is a stateful transport protocol that can be used to convey intermixed APDUs of two distinct
priorities, providing application protocol identification and end-device end-point addressing, as well as
detection of most non-deliberate changes to the conveyed PDU.

NOTE TCP, as specified by RFC793 and its amendments, does not provide any security against deliberate forgery or changes
of conveyed APDUs.

Some aspects of TCP can be observed only through use of a higher -layer protocol with a query/reply
mechanism, where higher-layer PDUs conveyed via TCP and addressed to the DUT trigger higher-layer
reply PDUs conveyed via TCP and addressed to the TD.

The simplest means of testing the robustness of the DUT’s TCP implementation is for the DUT to provide
and the TD to use the standard TCP Echo server on port 7 (RFC862). This server accepts TCP T PDUs
with well-formed headers, interchanges source and destination IP addresses and source and destination
ports, additively transforms received sequence numbers into sent sequence numbers, computes the
checksum of the resulting TCP TPDU, and queues the TCP TPDU to IP for transmission. The ability to
send an arbitrary TCP payload to a DUT TCP Echo server and receive the identical TCP payload in
return provides an adequate basis for robustness testing the sequence number logic of the DUT’s TCP
implementation.

EDSA-406-2.01 28/56

Requirement TCP.R2 – Conditional test report notice of limited TCP robustness testability

If the TCP Echo server protocol is not available within the DUT, then only limited TCP robustness testing
is possible. In such a case the test results SHALL state the non-availability of a TCP Echo server within
the DUT, and that as a consequence robustness of the DUT’s TCP implementation to sequence -number-
based attacks was only partially testable.

6.4 Phase 0: DUT preconditioning

Requirement TCP.R3 – Preconditioning of DUT, TD and any firewalls between the DUT and TD

a) If possible, the DUT SHALL be preconditioned for robustness testing by enabling the DUT to act as a
server on the TCP Echo protocol (RFC862), possibly only for protocol test purposes, enabling that
protocol within the DUT:

b) The DUT protocol stack implementation, any firewall in the DUT, and any firewalls intermediary
between the DUT and the TD SHOULD be preconditioned for robustness testing by disabling any
rules that block the transmission or propagation of ICMP error PDUs from the DUT to the TD;

c) The DUT, the TD(s) and possibly other devices in the test system SHALL be configured to allow
observation of the performance of essential functions of the embedded device under the test
conditions, per the requirements in [CRT.Essential_functions].

Essential functions as defined in [CRT.Essential_functions] include control loops, commands to control
device configuration such as setpoints, and process a larms. A key approach to obtain observability is to
use, as part of the test configuration, other automation system elements that have been engineered to
communicate with and monitor the DUT.

6.5 Phase 1: Baseline operation

6.5.1 General

Requirement TCP.R4 – Demonstration of baseline operation

Before the TD commences robustness testing, the DUT shall demonstrate its ability to operate as
expected in the test environment, including that the TCP component of the DUT’s protocol stack is
present and functioning, and that the DUT can maintain essential functions.

6.5.1.1 Initial ACK sequence number generation

The baseline operation test phase of TCP includes an assessment of the DUT’s resistance to attacks
based on prediction of the initial sequence numbers of “new” (e.g., spoofed) TCP connections.

Requirement TCP.R5 – Unpredictability of DUT’s initial sequence numbers

Although RFC793, the initial specification of TCP, specified that initial TCP sequence numbers should be
generated from a pseudo-clock, giving them a maximal-length period but making them predictable to an
attacker, subsequent analysis of cyber defense needs led to a relaxation of that requirement, via
RFC4987. Modern implementations of TCP SHOULD NOT genera te initial sequence numbers whose
values appear to be correlated.

Many tests exist that attempt to evaluate the statistical “randomness” of generates sequences of
purportedly uniformly-random numbers. To provide uniformity of the assessment of randomness b y
different robustness test suites, the three NIST-originated STS tests – Monobit, Runs and Serial – from
the GPL’d dieharder suite of randomness tests (see Bibliography) SHOULD be applied, with their results
logged in the TCP robustness test report.

6.5.2 Presence of proprietary protocol extensions

It is common practice for vendors to extend a standard protocol in a proprietary manner to provide
functionality not covered by the standard protocol, or to provide more efficient or more constrained data

EDSA-406-2.01 29/56

transport for specific device information (e.g., when multiple device parameters require atomic update or
readout as a group to maintain their inter-parameter consistency). Such extensions may take the form of
extra message types, extra fields in standard messages, or extra functionality for standard fields in
standard messages.

NOTE Robustness testing is not required to include specialized testing of proprietary protocol extensions. Rather, vendor
disclosure of such extensions is intended to provide a basis for expl anation of otherwise anomalous test results.

Requirement TCP.R6 – Equipment vendor disclosure of proprietary protocol extensions

When a protocol offered for testing has been implemented with deliberate proprietary extensions, the
vendor SHALL document the extensions in a manner similar to that of Clause 4, such that robustness
testing can explore the intended and unintended consequences of those protocol extensions. It is
acceptable that access to this proprietary information be covered by a non-disclosure agreement (NDA)
between the equipment vendor and the organization that is providing the ISCI robustness testing service.

6.6 Phase 2: Basic robustness testing

6.6.1 General

Areas of specific robustness testing are identified by analysis of the controlling protocol standards.
These include identification of all field value ranges and of the bounding values of the underlying
message representation (e.g., a range of 10..100 in a one-byte field, whose underlying representational
bounding values are 0..255). Basic robustness testing includes testing the acceptability of each of these
bounding values, and of the acceptance or rejection of adjacent values to those bounding values when
such adjacent values can be represented in the message encoding. It also includes testing whether fields
specified to convey signed or unsigned values are distinguished and processed appropriately.

Also included in this testing are out-of-order receipt of protocol messages, and receipt of related protocol
messages (e.g., multiple IP fragments of the same aggregate payload) with inconsistent options or
overlapping segments and segment gaps that must be detected and handled during fragment
reassembly.

Also included in this testing are various alternative representations for data elements (e.g., UTF 8 and
various character escape and recoding sequences, such as the common substitution of %20 for a space
character in a URL). Robustness testing of such alternatives can examine only a miniscule subset of all
such possible encodings, so only a minimal random probing actually occurs.

Conceptually, basic robustness testing consists of the following, where volume or rate of message traffic
is not a factor:

a) tests of valid message traffic:

1) in expected sequences, sent at a low rate;

NOTE TCP traffic is stateful, as may be conveyed higher-layer protocol traffic used for the testing.

2) in unexpected but valid sequences sent at a low rate (i.e., where the messages would be
considered valid for the protocol under some conditions, but are not expected for the particular
protocol state, message sequence or relative time);

b) tests of low rate erroneous message traffic (e.g., the ability of the device to function after receiving
erroneous messages), including:

1) single erroneous messages, including messages with inconsistent field values;

2) properly formed messages in erroneous sequences

3) sequences of erroneous messages

[EDSA-310] describes the criteria for adequate performance of device essential functions under these
network traffic conditions. These criteria depend upon the specific function as well as whether the
function operates on the same network interface used for test traffic.

EDSA-406-2.01 30/56

6.6.2 Basis for TCP robustness testing

Correctly and incorrectly formed TCP TPDUs sent to the DUT from the TD, some of which solicit
expected responses from the DUT, form the basis for TCP robustness testing.

Requirement TCP.R7 – Testing of each message field for sensitivity to invalid content

For basic robustness testing requiring erroneous messages or message sequences, valid TCP TPDUs or
TPDU sequences from the TD to the DUT SHALL be altered so that one component of the TCP TPDU is
erroneous; or so that the TCP TPDU is in violation of 4.2.4, 4.2.5, 4.2.6 or 4.3; or that it is both
erroneous and in violation.

Such alterations SHALL be applied to each field of the TCP TPDU where alteration might have an impact
on the DUT.

During basic robustness testing, lower level PDUs employed to convey a protocol under test SHALL be
valid.

NOTE 1 This type of testing can be described as single-message protocol “fuzzing”.

NOTE 2 It is the TCP protocol itself that is being tested, not any conveyed higher -level application protocol whose reply
mechanism(s) provide a means of forcing the DUT to send reply TPDUs containing TCP -user data to the TD, which in turn have
the desired side effect of advancing the TPDU sequence number for data from the DUT to the TD.

It is suggested that basic robustness testing proceed in stages, from simple to complex, as enumerated
in 6.6.1 and indicated by the following list. In general, such order ing simplifies the task of locating the
source(s) of software or hardware problems should they be uncovered by the testing. However, such
ordering is not a requirement.

Requirement TCP.R8 – Constituent elements in basic robustness tests

Basic TCP robustness testing SHALL include the following elements, either in distinct test phases or
intermixed in a form of the test supplier’s choosing:

a) Valid message traffic

b) Erroneous messages

6.7 Phase 3: Load stress testing

6.7.1 General

NOTE 1 This testing phase is used to ascertain resistance to busy plant conditions as well as deliberate attacks.

Conceptually, load stress testing consists of tests of valid message traffic sent in two distinct phases:

Phase 1 – Valid message traffic is sent at a high rate less than the saturation rate threshold specified by
the DUT vendor (e.g., simulating normal but busy plant conditions);

Phase 2 – Valid message traffic is sent at up to the full auto-negotiated link rate (e.g., simulating an
attack or malfunction of some kind);

Attacks against a protocol implementation take the form of repeated probing by malformed messages, or
by correctly formed messages whose arrival sequence and relative timing are controlled by the attacke r,
or (more usually) by combinations thereof, all with the intent of exploiting some oversight or error in the
specific protocol implementation(s), or of activating some intertwining aspects of a multi -layer protocol
stack that were unconsidered by the implementing organization.

NOTE 2 Self-induced accidental attacks are also possible, due to designer or operator oversight.

Common examples of exploited oversights and errors are deliberate buffer overflows where the
implementer had neglected to detect excessive message or field size, or recursive activation of character
escape encoding when the implementer had not considered recursion. Implementation interactions within
a multi-layer protocol stack may occur when an initial resource allocation (e.g., memory buffering) made

EDSA-406-2.01 31/56

by one protocol layer implementation is driven into an adjustment phase that conflicts with a resource
allocation already made by a paired protocol layer implementation.

6.7.2 Basis for load stress testing

Device defenses against high traffic rates impact load stress testing, and are documented by the device
vendor per the following requirement.

Requirement TCP.R9 – Documentation of self-protective rate limiting behavior

Where the DUT vendor imposes rate limiting on one or more of the protocols in the test process (e.g.,
“Ethernet”, IP or TCP), the DUT vendor SHALL document that rate limiting occurs for that identified
protocol when message rates exceed a perhaps-unspecified rate, as required by [CRT.Rate_limiting].

NOTE 1 The “Ethernet” protocol is included in this list as an identifiable placeholder for any physical and data -link protocols
used to convey IPv4 or IPv6 NPDUs.

Requirement TCP.R10 – Constituent elements in load stress tests

Load stress testing SHALL include the following elements, either in distinct test phases or intermixed in a
form of the test supplier’s choosing:

a) high-rate valid message traffic

b) over-saturation-rate version of a), at the maximum auto-negotiated link rate that the TD can support.

Requirement TCP.R11 – Testing of saturation rate-limiting mechanism(s)

Saturation rate testing SHOULD be for a duration of two minutes, long enough for any saturation effects
to manifest. Tests that inherently involve a large number of TPDUs, such as port scans, may need to run
for much longer durations so that they do not cause other untoward impact on the test environment,
which inherently involves the DUT, the TD and any other devices used in ascer taining the continuing
performance of the DUT’s other normal functionality (e.g., interactions with superior or peer automation
system components).

Requirement TCP.R12 – Reproducibility of robustness testing

Basic robustness testing SHALL use a deterministic selection process (which SHALL be a seeded
pseudo-random process where applicable), that tests combinations of valid and erroneous messages.
See Clause 7 for specific required test cases.

Load stress testing SHALL use a deterministic selection process (which SHALL be a seeded pseudo-
random process where applicable), that tests series of valid messages, with the latter including
malformed messages. See Clause 7 for specific required test cases.

NOTE 2 The above constraint to use a deterministic selection process does not prohibit use of feedback from analysis of DUT
responses (and non-responses) as a means of further varying and focusing testing. Nor does it prohibit use of tester -selectable
options and modes to determine the aggressiveness of the test process. Rather, it is merely an attempt to facilitate
reproducibility by requiring use of reproducible means to select the order, sequence and components of each test.

6.7.3 Specific load stress testing

6.7.3.1 General

Due to its complex somewhat-stateful nature and the multi-decade history of successful cyber attacks
against TCP, there are a number of specific TCP protocol features, and combinations thereof, that
require special attention:

a) Initial ACK sequence number generation

b) Priority traffic interleaving and de-interleaving

c) Correct handling of extermal port numbers 0 and 65535

EDSA-406-2.01 32/56

d) DUT response to closing and opening its peer’s TCP receive window

e) DUT response to inconsistent advance of its peer’s TCP receive window edges

f) Peer dishonoring of the DUT’s TCP receive window edges

g) Rejection of spoofed source addresses that attempt to cause the DUT to connect to itself

h) Mechanisms to withstand a SYN flood attack

i) Mechanisms to withstand a SYN/ACK flood attack

j) Mechanisms to withstand RST and similar flood attacks

k) Mechanisms to withstand spoofing of FIN, RST and similar TCP flags of a DUT correspondent

l) DUT response to manipulation of the echoed timestamp value in a TS option to disrupt the DUT’s
round-trip transit delay estimation process, when the DUT employs the TS option

m) DUT response to inconsistent and invalid selective acknowledgements when the DUT has negotiated
the use of the SACK option

Many TCP options have constraints on their utility, which are summarized in
https://www.ietf.org/mail-archive/web/tcpm/current/msg03199.html. Robustness testing should include
sending such options to the DUT when they are not useful and thus likely not expected. It should also
include sending options that violate any specified constraints on the option value or coding (e.g., using a
timeout value of zero in the UTO option).

6.7.3.2 Priority traffic interleaving and de-interleaving

Requirement TCP.R13 – Ability to accept priority traffic

A TCP connection can convey both normal and urgent byte streams, which are interleaved before
transmission and de-interleaved (i.e., separated) after reception. Thus TCP robustness testing SHALL
include testing of whether the DUT fails upon receipt of TPDUs containing

 one octet of priority data, together with octets of non-priority data;

 only priority data.

NOTE Testing of other combinations (or ratios) of priority and non-priority data is permitted and encouraged.

6.7.3.3 Handling of extremal port numbers 0 and 65535

Requirement TCP.R14 – Handling of extermal port numbers 0 and 65535

TCP port numbers are unsigned 16-bit numbers with no range restrictions. Implementations that do not
declare the port number as an unsigned number are expected to malfunction when a port of 32768 or
greater is specified. Similarly, an implementation that neglects to consider the usability of port zero,
which is seldom used, also may malfunction in a detectable manner.

6.7.3.4 DUT response to closing and opening its peer’s TCP receive window

Each side of a TCP connection specifies to its TCP peer, through the sender ’s specified receive window,
the amount of additional TCP payload data which that side is prepared to accept. Each side has
complete control over its own receive window and can close, open, and reclose that window at will.

When the TD closes its receive window, the DUT SHALL honor that closure, after it is detected, and not
send additional octets of TCP payload until the TD’s receive window is again opened. However, due to
concurrency and transmission delays, it may take some time before the remote TCP peer detects the
receive window closure; during that time addition octets may be received by the TD even though it
considers its receive window closed.

When the TD opens a closed receive window, the DUT SHALL honor that opening, after it is detected,
and send additional octets of TCP payload up to but not greater than the number of octets specified for
the open receive window. When successive TCP TPDUs from the TD alter the value of that receive

https://www.ietf.org/mail-archive/web/tcpm/current/msg03199.html

EDSA-406-2.01 33/56

window, the DUT SHALL honor them after they are detected; this can be verified to some extent by
noting fluctuations in the sequence numbers of the octets that the DUT transmits in response to those
changing edges of the TD’s receive window.

6.7.3.5 DUT response to inconsistent advance of its peer’s TCP receive window edges

Requirement TCP.R15 – Defense against inconsistent peer receive window edges

An attacker that is inconsistent in its advance of its TCP receive window edges may be able to exploit a
fault in the DUT’s implementation of TCP, particularly when combined with resetting of the TCP connec-
tion (via inclusion of a set RST flag in the TCP TPDU). The TD SHOULD probe the DUT’s response to
combinations of receive sequence number and window edge changes and use of the RST flag.

6.7.3.6 Peer dishonoring of the DUT’s TCP receive window edges

Requirement TCP.R16 – Defense against peer dishonoring of the DUT’s TCP receive window edges

An attacker that dishonors the remote receive window edges as declared by the DUT in its TCP TPDUs,
by responding with TCP TPDUs containing payload octets with impermissible sequence numbers, often
when combined with use of the URG or RST flag, MAY be able to exploit a fault in the DUT’s implemen -
tation of TCP. The TD SHOULD probe the DUT’s response to sent TCP TPDUs that exploit such combin-
ations.

6.7.3.7 Rejection of spoofed source addresses that attempt to cause the DUT to connect to itself

Requirement TCP.R17 – Rejection of TCP connection attempts where the source IP address is an
IP address of the DUT

Through spoofing of a source IP address, an attacker can request that a DUT establish a TCP
connection with itself, either on a single DUT TCP port (i.e., destination port and spoofed source port are
identical) or between a pair of different DUT TCP ports.

NOTE Historically, many TCP implementations have crashed when such a looped-to-self connection is requested. This type of
attack is known as a “Land” or “LaTierra” attack.

Where the DUT able to establish such a connection, for embedded devices it usually necessarily would
be a connection between two DUT ports both acting as servers. In such a situation, if the connection
were to be created, the DUT might then maintain the connection (with itself) indefinitely even if there is
minimal (or no) activity on the connection. The simplest way for the DUT to protect itself from this attack
is to refuse to establish or maintain any connection in which the remote correspondent has an IP address
assigned to the DUT. This protection could be provided by the DUT’s TCP implementation, or more
broadly by the DUT’s IP implementation.

The TD SHALL attempt to establish a TCP connection with the DUT through use of the DUT’s own IP
address as the spoofed source IP address of the TD’s connection attempt. Any spoofed source port may
be specified, including the same port as the destination port of the TCP connection request. The TD shall
report whether such a connection request appears to have succeeded, as inferred through eavesdropped
observation of the DUT’s IP transmissions.

6.7.3.8 Mechanisms to withstand a SYN flood attack

Requirement TCP.R18 – Resistance to SYN flood attacks

RFC4987 and subsequent analyses have determined that a TCP server implementation can defer
allocating state for requested TCP connections until after the 3rd phase of the 3 -way handshake that
initiates a TCP connection, which corresponds to receipt of the second TPDU (an ACK) from the remote
client that is attempting to initiate the connection. The basic method employed to make this deferral is to
use as the initial server sequence number a keyed hash of the requesting client’s source IP address and
port, such that the resulting sequence number is unpredictable to an attacker but can be used by the

EDSA-406-2.01 34/56

server to validate receipt of any received TPDU that appears to be the 3rd phase of the TCP connection
establishment 3-way handshake, at which point the source IP and port addresses of that 3rd TPDU can
be used to provide the necessary state information to in itialize a server connection record.

All TCP server implementations SHOULD implement such delayed state allocation to minimize the impact
of TCP SYN flood attacks, where an attacker simply sends myriad TCP connection establishment
requests without completing the 3-way handshake for any of them.

6.7.3.9 Mechanisms to withstand a SYN/ACK flood attack

Requirement TCP.R19 – Resistance to attacks that leave connections open but unused

Recent analyses have determined that a TCP attacker can employ a similar technique to defer allocating
state for requested TCP connections until after connection establishment is completed. The basic
method employed to make this deferral is to use as the initial client (e.g., attacker) sequence number a
4-octet value from which the attacker can generate the six octets of its spoofed source IP address and
port, such that the resulting sequence number can be used by the attacker to validate receipt of any
received TPDU that appears to be the 2nd phase of the TCP connection establishment 3-way
handshake, at which point the source IP and port addresses of that 2nd TPDU can be used to provide
the necessary state information to create and send the 3rd TPDU of the 3 -way handshake, thereby
saddling the server with connection state while the attacker needs none unless and until the attacker
actually sends TCP payload data on the connection.

NOTE 1 This attack technique was developed to enable attackers to delay their own resource allocation until they had elicited a
response from a listening TCP server, thus facilitating “shotgun” attacks on a large number of potentially responsive destination
IP addresses.

NOTE 2 The above-described attacker technique can be extended by using fewer than 32 bits of the sequence number t o
determine the 48 bits of spoofed address, with the remaining low-order bits of the sequence number allowed to increment for
each octet of TCP payload data actually transmitted by the attacker to the client. This permits the attacker to keep the TCP
connection alive for a while even when the attacked server mounts defensive measures that result in the termination of inactive
TCP connections, all without requiring the attacker to dedicate any memory resources for TCP state to the attacking connectio n.

A robust TCP server implementation that is running low on memory resources for TCP state records due
to too many successful TCP connection attempts MAY terminate inactive TCP connections as a response
to mitigate this potential attack. In such a case, the selec tion of which connection should be terminated
SHOULD consider both the duration of inactivity and the recent or total amount of information transferred
on the connection, preferring a connection that has been less active and/or that has been inactive longe r.
Under such overload conditions, other defensive measures, such as limiting the number of open TCP
connections which share a specific source IP address range, also MAY be employed, provided that the
DUT vendor documents both the rationale for such measures and the specific measures used to initiate
the defensive action.

6.7.3.10 Mechanisms to withstand RST and similar flood attacks

Requirement TCP.R20 – Resistance to attacks that spoof TCP flags

An attacker that can eavesdrop on an existing unsecured TCP connection with the DUT can spoof the
DUT’s correspondent and cause the DUT to accept the attacker’s TCP TPDUs as if they had come from
the DUT’s correspondent. This creates a situation analogous to that which occurs when the attacke r has
itself established a TCP connection with the DUT, except that it has the added benefit of confusing the
DUT’s correspondent in addition to the DUT.

An attacker that establishes and maintains a TCP connection with the DUT can induce whatever load on
the DUT that the specific application protocol conveyed by the connection permits, including causing the
DUT to respond to received TCP TPDUs that reset the connection (i.e., TPDUs with the RST flag set), or
that open and close the attacker’s receive window . In general, there is no way within TCP to defend
against such attacks, as they mimic expected TCP usage by the DUT’s correspondents. However, as
with 6.7.3.9, the DUT MAY activate protective measures if it finds itself to be resource-limited, including
limiting the rate at which it responds to TCP connections that have remote endpoints not in some

EDSA-406-2.01 35/56

configured table of expected correspondents, or that employ applica tion protocols that the DUT does not
consider to be essential to its deployed function.

6.7.3.11 Mechanisms to withstand spoofing of FIN, RST and similar TCP flags of a DUT
correspondent

An attacker that can eavesdrop on an existing unsecured TCP connection with the DUT can spoof the
DUT’s correspondent and cause the DUT to accept the attacker’s TCP TPDUs as if they had come from
the DUT’s correspondent. This creates a situation analogous to that which occurs when the attacker has
itself established a TCP connection with the DUT, except that it has the added benefit of confusing the
DUT’s correspondent in addition to the DUT.

An attacker that spoofs the DUT’s correspondent in an existing TCP connection can cause the DUT to
make state transitions that are inconsistent with those expected by the DUT’s correspondent. In
particular, a spoofed TCP TPDU apparently from the correspondent that contains a set RST or FIN flag
will cause the DUT to assume a state inconsistent with that of its correspondent.

The TD SHALL test the DUT’s response to such spoofed TCP TPDUs by acting as both the DUT
correspondent and a spoofing attacker, observing the DUT’s response to receipt of interleaved TCP
TPDUs from the “correspondent” and the “attacker”. The TD SHALL test various combinations of set and
reset TCP flags, including situations where the FIN flag is set and the ACK and/or PSH flags are reset.

6.7.3.12 DUT response to receipt of inconsistent or contextually-inappropriate selective
acknowledgment block edges

Requirement TCP.R21 – Defense against deliberately inconsistent and/or contextually-
inappropriate selective acknowledgment block edges when the DUT has negotiated the use of the
SACK option

When the DUT appears to support selective acknowledgment, by validly confirming an offered SACKN
option enabling use of selective acknowledgment on the TCP connection, the TD SHALL test the DUT’s
defense against illogical and inconsistent field values within SACK options (e.g., generally involving
violations of the combined rules and requirements of RFC2018 and RFC2883).

Such testing also SHALL include deliberately inconsistent interactions between selective acknowledg -
ments, as conveyed by SACK options, and full acknowledgments, as signaled by the TPDU ACK flag.

An attacker that deliberately violates the requirements of RFC2018 and/or RFC2883 may be able to
exploit a fault in the DUT’s implementation of TCP, particularly when combined with resetting of the TCP
connection (via inclusion of a set RST flag in the TCP TPDU). The TD SHOULD probe the DUT’s
response to receipt of combinations of inconsistent and/or erroneous block subsegments as conveyed in
TCP selective acknowledgment options, particularly when coupled with use of the RST flag.

6.7.3.13 DUT response to manipulation of timestamp values in a TS option

Requirement TCP.R22 – Resistance to manipulation of timestamp values in a TS option

Many TCP implementations employ non-trivial algorithms to filter the jitter from the sequence of round-
trip transit delay measurements that arise from use of the TS option. Also, the TS option often is used to
detect wrap-around in the remote sender’s TCP sequence number space, as described in the so -called
PAWS (protect against wrapped sequence numbers) part of RFC1323.

The TD SHALL test the DUT’s response to deliberate manipulation of

 the time values in TS option fields, and/or

 the presence or absence of the TS option field,

EDSA-406-2.01 36/56

where that manipulation is intended to disrupt the DUT’s round-trip transit delay estimation process
and/or disrupt the DUT’s rejection of TPDUs that do not belong to the current half -cycle of the current
TCP connection’s sequence number space.

NOTE The first of these intended disruptions requires manipulation of the echoed timestamp, which RFC13 23, 3.2 calls the “TS
Echo reply (TSecr)”, whereas the second of these intended disruptions requires misstatement of the originated timestamp, whic h
RFC1323, 3.2 calls the “TS value (TSval)”.

6.8 Reproducibility

Requirement TCP.R23 – Overall reproducibility

Baseline operation, basic robustness testing, and load stress testing SHALL be reproducible per the
requirements of [CRT.Reproducibility].

Those requirements recognize that deterministic behavior of the DUT itself is not under the control of the
tester and must be assumed. Further, it is acceptable to branch a test process based upon prior results.
Thus a change to the DUT may impact repeatability of a test even if the change does not intentionally
cause variance for that test.

7 Specific test cases

Requirement TCP.R24 – Specific test cases

The tested suite of protocols SHALL be documented in at least the detail specified by Table 5.

Table 5 – Protocols used in test process

Protocol layer tested Permissible alternatives Protocols tested

Maximum network
communications load at
which deliberate limiting

occurs

Physical layer IEEE 802.3

Data-link layer “Ethernet”

Network layer
IPv4 + ICMPv4 error reporting

or
IPv6 + ICMPv6 error reporting

Transport layer TCP

Application layer TCP Echo

Requirement TCP.R25 – Testing SHALL include at least that specified by Table 6 through Table 30

These tables are descriptive, not proscriptive – there is no requirement that conforming robustness
testing actually employ test sequences that are ordered or grouped as described in these tables. Tests
where Results are indicated as Pass or Fail, SHALL pass if the indicated Expected response is
observed. If the Results row in a table does not indicate “Pass/Fail,” this means that the test results
provide security-relevant information about the DUT to be included in the test report, but cannot cause a
device to fail certification.

EDSA-406-2.01 37/56

Table 6 – TCP.T00: Baseline operation

Test ID TCP.T00

Test name Baseline operation

Test description

The basic operational aspects of the protocol under test, and of any inferior or selected superior
supporting protocols used in the testing, shall be demonstrated as a means of checking that
gross configuration or other errors are not interfering with the testing process, that TCP is a
functioning part of the DUT’s protocol stack, and that the protocol implementation under test
performs approximately as expected when not under test

Reference requirements Requirement TCP.R4

Test type Baseline operation

Test status Mandatory

Expected DUT behavior The DUT demonstrates basic protocol operability in the test configuration

Test object To validate the lack of major errors in the configuration of the DUT and test environment

Test configuration
A TD is connected to the DUT by an underlying switched network that uses IEEE 802 and IP
addressing, as specified in [CRT.Test_configuration_1]

Test procedure

The TD establishes that DUT is reachable and functions normally in the test environment, before
protocol-specific testing commences. This includes establishing that those protocol components
of the DUT that are used during TCP robustness testing are functional and accessible.

For each application layer protocol that will be used for robustness testing, the TD establishes a
TCP connection with the DUT over the selected network layer (usually IPv4) and establishes that
the selected protocol stack is, to at least some extent, usable

Expected DUT response
The DUT demonstrates expected behavior in its “automation” environment, including that the
TCP component of the protocol stack is present and functioning and that the DUT can
adequately maintain essential functions

Ultimate results Pass or fail

Remarks
Initial failure of this test indicates a probable problem with the configuration of the TD or the test
environment

EDSA-406-2.01 38/56

Table 7 – TCP.T01: Statistical analysis of initial sequence number values

Test ID TCP.T01

Test name Statistical analysis of initial sequence number values

Test description
The TD repeatedly initiates TCP connections and records the returned initial sequence number
values generated by the DUT. At test completion, a statistical analysis is made of those
sequence numbers and any apparent clustering or correlation in their values is reported

Reference requirements Requirement TCP.R7, violating 4.3, M11; Requirement TCP.R5

Test type Baseline operation

Test status Mandatory

Expected DUT behavior The DUT generates initial sequence numbers that are not predictable to an attacker

Test object To probe the robustness of the DUT’s resistance to spoofed connections

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure

The TD attempts to establish TCP connections with the DUT and records the initial sequence
numbers returned by the DUT during connection establishment. The TD assesses the correlation
of those initial DUT sequence numbers via use of the three tests STS Monobit, STS Runs, and
STS Serial from the GPL’d dieharder random number test suite (see Bibliography). At a
minimum, 100,000 samples or 2 hours of sample generation SHALL be used, whichever comes
first.

Expected DUT response
The DUT SHOULD establish connections with sequence numbers that do not have any apparent
correlation or predictability

Results Quality measure for the sequence of generated random numbers

Remarks
This test exposes failures to generate apparently uncorrelated initial sequence numbers, which
makes the DUT vulnerable to TCP connection spoofing. This test can be combined with other
DUT TCP testing, including the various TCP flood tests

Table 8 – TCP.T02: Truncated TPDU: truncated fixed header

Test ID TCP.T02

Test name Truncated TPDU: truncated fixed header

Test description
A truncated TCP TPDU is sent as an IP NPDU payload, where the payload is the initial octets of
a correctly formed TCP TPDU but where the total size of the payload is between 0 and 19 octets,
inclusive, and thus less than the minimum TCP header size of 20 octets

Reference requirements Requirement TCP.R7, violating 4.3, M1 and M3

Test type Basic robustness: PDU structural violations

Test status Mandatory

Expected DUT behavior
The DUT checks the TPDU’s length – the reported size of the NPDU’s payload – before
checksum validation. The minimum required NPDU payload length is 20 octets

Test object
To probe the robustness of the DUT’s parsing of TCP TPDUs and protection against malformed
TPDUs

Test configuration

A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s). The TD MAY monitor for any response from
the DUT

Test procedure
The TD sends the initial octets of an otherwise-valid TCP TPDU, where the conveying NPDU’s
payload is truncated to less than 20 octets. The TD monitors for any response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks The DUT is expected to reply with an ICMP ParameterProblem (type 0x04) PDU

EDSA-406-2.01 39/56

Table 9 – TCP.T03: Truncated TPDU: truncated header options

Test ID TCP.T03

Test name Truncated TPDU: truncated header options

Test description

A truncated TCP TPDU is sent as an IP NPDU payload, where the payload is the initial 20 or
more octets of a correctly formed TCP TPDU, but where truncation occurs within a non -null
header option field whose existence is indicated by a TPDU DataOffset field whose value is
greater than 5.

Reference requirements Requirement TCP.R7, violating 4.3, M2

Test type Basic robustness: PDU structural or content semantic violations

Test status Mandatory

Expected DUT behavior
The DUT checks the TPDU’s checksum and then the TPDU’s length – the reported size of the
NPDU’s payload – for adequacy and consistency with the values of TPDU header fields before
processing of any conveyed TPDU payload

Test object
To probe the robustness of the DUT’s parsing of TCP TPDUs and protection against malformed
TPDUs

Test configuration

A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s). The TD MAY monitor for any response from
the DUT

Test procedure
The TD sends the initial octets of an otherwise-valid TCP TPDU, where the conveying NPDU’s
payload is truncated to a number of octets of 20 or greater but less than the value of the TPDU’s
DataOffset field times 4. The TD monitors for any response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks The DUT is expected to reply with an ICMP ParameterProblem (type 0x04) PDU

EDSA-406-2.01 40/56

Table 10 – TCP.T04: Truncated TPDU: truncated priority data

Test ID TCP.T04

Test name Truncated TPDU: truncated priority data

Test description

A truncated TCP TPDU is sent as an IP NPDU payload, where the payload is the initial octets of
a correctly formed TCP TPDU containing priority data (as indicated by a set TPDU URG flag),
but where truncation occurs after the header field but before the end of the priority data field. In
other words, the conveying NPDU payload length is within the range

 [(TPDU.DataOffset 4) .. (TPDU.DataOffset 4 +TPDU.UrgentPointer)]

Reference requirements Requirement TCP.R7, violating 4.3, M2

Test type Basic robustness: PDU content semantic violations

Test status Mandatory

Expected DUT behavior
The DUT checks the TPDU’s checksum and then the TPDU’s length – the reported size of the
NPDU’s payload – for adequacy and consistency with the values of TPDU header fields before
processing of any conveyed TPDU payload

Test object
To probe the robustness of the DUT’s parsing of TCP TPDUs and protection against malformed
TPDUs

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure

The TD sends the initial octets of an otherwise-valid TCP TPDU with a set URG flag, where the
conveying NPDU’s payload is truncated to a number of octets in the range

 [(TPDU.DataOffset 4) .. (TPDU.DataOffset 4 +TPDU.UrgentPointer)].
The TD MAY monitor for any response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks The DUT is expected to reply with an ICMP ParameterProblem (type 0x04) PDU

Table 11 – TCP.T05: Invalid TPDU checksum

Test ID TCP.T05

Test name Invalid TPDU checksum

Test description
TCP TPDUs are sent whose checksum field value differs from the computed binary checksum for
the TPDU (i.e., so that numeric +0 (0x0000) is distinct from -0 (0xFFFF))

Reference requirements Requirement TCP.R7, violating 4.3, M4 and M5

Test type Basic robustness: PDU content semantic violations

Test status Mandatory

Expected DUT behavior
The DUT validates TCP TPDU checksums on receipt and compute TCP TPDU checksums prior
to transmission. The value +0 is not used

Test object To probe the robustness of the DUT’s checksum processing for TCP TPDUs

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure
The TD sends an otherwise valid TCP TPDU whose checksum field differs from a correctly
computed checksum for the TPDU. The TD monitors for any response from the DUT . The TD
MAY monitor for any response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks The DUT is expected to reply with an ICMP ParameterProblem (type 0x04) PDU

EDSA-406-2.01 41/56

Table 12 – TCP.T06: Malformed or undefined TCP TPDU options

Test ID TCP.T06

Test name Malformed or undefined TCP TPDU options

Test description

The TD includes non-null TCP option fields in some of its TCP TPDUs. Some of these option
fields are malformed, or reference undefined options. Each of the TCP options specified in 4.2.6
SHALL be included in some tests, sometimes singly and sometimes in combinations of two or
more options.

Reference requirements Requirement TCP.R7, violating 4.3, M10

Test type Basic robustness: PDU content syntactic or semantic violations

Test status Mandatory

Expected DUT behavior The DUT validates the TCP option field

Test object To probe the robustness of the DUT’s option processing for TCP TPDUs

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure
The TD sends an otherwise valid TCP TPDU whose option field is non-null and which may, or
may not, be contextually valid. The TD monitors for any response from the DUT . The TD MAY
monitor for any response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks
The DUT is expected to reply with an ICMP ParameterProblem (type 0x04) PDU when the option
field is malformed or contains an undefined option

Table 13 – TCP.T07: Unrestricted interpretation of select TCP TPDU options

Test ID TCP.T07

Test name Unrestricted interpretation of select TCP TPDU options

Test description
The TD includes one or more of the TCP options MSSN, WSN, SACKN, POCR and ACR, in
some TCP TPDUs where the SYN flag is reset . Testing SHALL include each of these options,
both singly and in some combinations

Reference requirements Requirement TCP.R7, violating 4.3, M12

Test type Basic robustness: PDU content semantic violations

Test status Mandatory

Expected DUT behavior
The DUT validates the TCP option field when present. Received TPDUs that contain any of
MSSN, WSN, SACKN, POCR or ACR and which have the SYN flag reset are erroneous and are
ignored

Test object To probe the robustness of the DUT’s option processing for TCP TPDUs

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure

The TD sends an otherwise valid TCP TPDU whose SYN flag is reset and whose option field is
syntactically valid and contains one or more of the TCP options MSSN, WSN, SACKN, POCR
and ACR. The content of the remainder of the TPDU is selected to provide evidence on
subsequent transfers within the TCP connection of whether the TPDU was ignored that had the
SYN flag reset, and that contained TPDU options that are invalid when the SYN flag is reset.
The TD MAY monitor for any response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks
The DUT is expected to be robust against receipt of options when in protocol states where such
options are not permissible or relevant (or both)

EDSA-406-2.01 42/56

Table 14 – TCP.T08: “Land” and “LaTierra” attacks

Test ID TCP.T08

Test name “Land” and “LaTierra” attacks

Test description

In a “Land” attack, the TD initiates TCP connection attempts with the DUT, spoofing the source
IP address and port in the connection attempt so that they are identical to the destination IP
address and port of the DUT. The goal of this attack is to induce the DUT to attempt to complete
a TCP connection with itself, resending the TCP reply in response to each of its own TPDUs.

In a “LaTierra” attack, the TD modifies the above procedure by sending TCP TPDUs to more
than one port of the DUT, attempting to cross-link the DUT’s ports into a TCP connection where
each port acts as responder, again attempting to hang the DUT’s TCP implementation in a loop

Reference requirements
Requirement TCP.R7, violating 4.3, M9
Requirement TCP.R17

Test type Basic robustness: self-referent NPDU addressing

Test status Mandatory

Expected DUT behavior
The DUT rejects any TCP connection request where the source IP address is an IP address of
the DUT

Test object To probe the robustness of the DUT’s ability to survive spoofed connection attempts with itself

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure

The TD sends an otherwise valid TCP connection establishment TPDU whose conveying NPDU
specifies the DUT’s IP address as both the NPDU’s destination and sourc e addresses. For the
first such test, the source port of the connection request is identical to the destination port; for
subsequent tests the two ports differ. The TD MAY monitor for any response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks

1) The DUT is expected to discard the TPDU without notification

2) This test can expose failures to protect against spoofed source addresses that attempt to
cause the DUT to establish a TCP connection with itself. The Bibliography cites a paper with
more information about these attacks

EDSA-406-2.01 43/56

Table 15 – TCP.T09: Spoofed TCP flags

Test ID TCP.T09

Test name Spoofed TCP flags

Test description
The TD establishes TCP connections with the DUT, then sends TCP TPDUs on the connection
whose TCP flags have various inconsistent or illogical states, including occasional use of the
reserved flag bits. Testing shall include a substantial number of such flag combinat ions

Reference requirements Requirement TCP.R20

Test type Basic robustness: PDU content semantic violations

Test status Mandatory

Expected DUT behavior
The DUT recovers from such nonsensical intermixed TCP flags, either continuing or re setting or
terminating the connection

Test object
To probe the robustness of the DUT’s processing of TCP TPDUs that are inconsistent with
current TCP state

Test configuration
A TD is connected to the DUT by an underlying switched network that uses eithe r IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure
The TD sends otherwise valid TCP TPDUs whose flags are occasionally non-sensical or
inconsistent with the state of the TCP connection, including occasional use of the reserved flag
bits. The TD MAY monitor for any response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks
It does not matter whether the DUT continues, resets or terminates the connections whose TCP
flags assume inconsistent state; it only matters that the DUT does not itself lock up immediately
or eventually through resource exhaustion

Table 16 – TCP.T10: Inconsistent peer receive window edges

Test ID TCP.T10

Test name Inconsistent peer receive window edges

Test description
The TD establishes a TCP connection with the DUT, then sends TCP TPDUs for the connection
that report inconsistent and illogical receive window edges for the TD’s side of the connection,
combining this with intermittent reset of the connection

Reference requirements Requirement TCP.R15

Test type Basic robustness

Test status Mandatory

Expected DUT behavior
The DUT survives attacks that manipulate the peer’s receive window edges with inconsistent and
illogical values

Test object To probe the robustness of the DUT’s defensive processing of TCP TPDUs

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure

The TD sends otherwise valid TCP TPDUs whose receive window edges are illogical or
inconsistent with respect to prior TPDUs of the same TCP connection, interleaving reset of the
connection at a rate intended to induce loss of synchronization between the TCP connection
endpoints. The TD MAY monitor for any response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks

It does not matter whether the DUT continues, resets or terminates the connections whose TCP
receive window edges are reported with inconsistent values; it only matters that the DUT does
not itself lock up or irreversibly allocate TCP connection state resources to connections that are
terminated in error

EDSA-406-2.01 44/56

Table 17 – TCP.T11: Defense against peer dishonoring of the DUT’s TCP receive window edges

Test ID TCP.T11

Test name Defense against peer dishonoring of the DUT’s TCP receive window edges

Test description

The TD establishes a TCP connection with the DUT, then sends TCP TPDUs for the connection
that do not honor the DUT’s receive window edges by responding with TCP TPDUs containing
payload octets with impermissible sequence numbers, combining this with occasional reset of
the connection.

Reference requirements Requirement TCP.R16

Test type Basic robustness

Test status Mandatory

Expected DUT behavior
The DUT survives attacks that dishonor the DUT’s receive window edges by sending TCP
payload octets assigned to inconsistent and illogical sequence number values

Test object To probe the robustness of the DUT’s defensive p rocessing of TCP TPDUs

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure

The TD sends otherwise valid TCP TPDUs which contain non-null payloads whose sequence
numbers are inconsistent with the DUT’s expected or reported receive window edges, as
assessed with respect to prior TPDUs of the same TCP connection. The TD MAY monitor for any
response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks

It does not matter whether the DUT continues, resets or terminates the connections whose TCP
receive window edges are reported with inconsistent values; it only matters that the DUT does
not itself lock up or irreversibly allocate TCP connection state resources to connections that are
terminated in error

EDSA-406-2.01 45/56

Table 18 – TCP.T12: Inconsistent and/or contextually-inappropriate
selective acknowledgment block edges

Test ID TCP.T12

Test name Inconsistent and/or contextually-inappropriate selective acknowledgment block edges

Test description

The TD establishes a TCP connection with the DUT in which use of selective acknowledgment is
negotiated, then sends TCP TPDUs with the SACK option that report inconsistent and/or
contextually-inappropriate selective acknowledgment block edges for the TD’s side of the
connection, combining this with occasional reset of the connection

Reference requirements Requirement TCP.R21

Test type Basic robustness

Test status Mandatory

Expected DUT behavior
The DUT survives attacks that manipulate the peer’s receive window edges with inconsistent and
illogical values

Test object To probe the robustness of the DUT’s defensive processing of TCP TPDUs

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure

After successfully negotiating use of selective acknowledgment on a TCP connection, the TD
sends otherwise valid TCP TPDUs containing SACK options, ore or more of whose block edges
are inconsistent or contextually inappropriate with respect to prior TPDUs of the sam e TCP
connection. The TD MAY monitor for any response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks

It does not matter whether the DUT continues, resets or terminates the connections on which the
inconsistent or contextually-inappropriate selective acknowledgment block edges are reported; it
only matters that the DUT does not itself lock up or irreversibly allocate TCP connection state
resources to connections that are terminated in error

EDSA-406-2.01 46/56

Table 19 – TCP.T13: Manipulation of DUT timestamps echoed to the DUT

Test ID TCP.T13

Test name Manipulation of DUT timestamps echoed to the DUT

Test description

The TD establishes TCP connections with the DUT and includes the TS option in at least some
of the TPDUs it sends to the DUT. If the DUT includes any TS options in the TPDUs that it sends
to the TD, the TD manipulates those DUT-provided timestamp values when it is supposed to
echo them, in violation of the requirements of RFC1323. The goal of this manipulation is to
probe any DUT logic related to reasonableness of returned timestamps, attempting to cause the
DUT to compute round-trip-delays that trigger abnormal recovery actions

Reference requirements Requirement TCP.R22

Test type Basic robustness

Test status Mandatory

Expected DUT behavior The DUT survives attacks that manipulate the values of putatively-echoed timestamps

Test object To probe the robustness of the DUT’s defensive processing of TCP TPDUs

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure
The TD sends otherwise valid TCP TPDUs containing TS options, some of whose timestamp
values are inconsistent or in violation of RFC1323. The TD MAY monitor for any response from
the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks

It does not matter whether the DUT continues, resets or terminates the connections on which the
inconsistent or contextually-inappropriate selective acknowledgment block edges are reported; it
only matters that the DUT does not itself lock up or irreversibly allocate TCP connection state
resources to connections that are terminated in error

EDSA-406-2.01 47/56

Table 20 – TCP.T14: Priority traffic interleaving

Test ID TCP.T14

Test name Priority traffic interleaving

Test description

The TD establishes TCP connections with the DUT, sending TPDUs that contain only non-
priority traffic (i.e., URG flag reset) intermixed with TPDUs that contain only priority traffic (i.e.,
URG flag set and all octets of TPDU payload are urgent) intermixed with TPDUs that contain
both priority and non-priority traffic (i.e., URG flag set, but less than all octets of TPDU payload
are urgent)

Reference requirements Requirement TCP.R13

Test type Basic robustness: PDU parsing and semantic violations

Test status Mandatory; however, the DUT is permitted to discard received urgent octets

Expected DUT behavior
The DUT de-interleaves received priority traffic correctly and, to the extent testable, interleaves
sent priority traffic correctly

Test object
To probe the robustness of the DUT’s processing of mixed urgent and normal priority octets in
TCP TPDUs

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure
The TD sends to the DUT valid TCP TPDU containing various mixtures of all normal, all urgent,
or mixed urgent and normal octets. The TD MAY monitor for any response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks

This test exposes problems with the DUT implementation in segregating urgent and normal
traffic. It does not require the DUT to implement an urgent traffic stream; however, the DUT is
not permitted to fail when such an urgent traffic stream is included (perhaps by spoofing) within
an existing TCP connection

EDSA-406-2.01 48/56

Table 21 – TCP.T15: Use of extremal TCP port numbers

Test ID TCP.T15

Test name Use of extremal TCP port numbers

Test description
The TD attempts to establish TCP connections with the DUT on both port zero (0x0000) and port
65535 (port 0xFFFF), to determine whether the DUT properly handles these seldom-used ports
as zero-origin unsigned port numbers

Reference requirements Requirement TCP.R14

Test type Basic robustness: PDU parsing and semantic violations

Test status Mandatory

Expected DUT behavior The DUT replies correctly to TPDUs addressed to these ports without causing an exception

Test object
To probe the robustness of the DUT’s processing o f port numbers that an implementation may
not correctly support

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. ICMP error reporting by the DUT
SHOULD be enabled at any intervening firewall(s)

Test procedure
The TD attempts to establish TCP connections with the DUT on valid TCP destination ports zero
(0x0000) and 65535 (0xFFFF) and observes the DUT’s responses . The TD MAY monitor for any
response from the DUT

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks

1) The DUT is expected to respond to the TCP connection establishment request TPDU. If no
service is available on the specified TCP port, the expected response consists of a TCP TPDU
with the RST flag set

2) A DUT implementation that neglects to treat port numbers as unsigned numbers is likely to fail
this test

Table 22 – TCP.T16: TCP conveyed-application robustness

Test ID TCP.T16

Test name TCP conveyed-application robustness

Test description

The TD generates TCP data and sends it to open TCP ports on the DUT. Any data size
supported by TCP may be generated, from 0 B to 65,535 B of TCP payload. The TCP data uses
a variety of data patterns known to cause problems for some TCP-conveyable protocols, without
attempting to target any specific TCP-conveyable protocol.

Reference requirements

Test type Basic robustness: APDU content semantic violations

Test status Mandatory

Expected DUT behavior
The DUT continues to function while receiving such TCP TPDUs, provided that the load thus
induced is less than that claimed as supportable by the DUT vendor

Test object
To probe the robustness of the DUT’s ability to receive and withstand a rate -limited burst of
TPDUs addressed to its discovered open ports, similar to that induced by an attacker’s follow -up
to a port scan

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]

Test procedure
The TD sends valid TCP TPDUs conveying varying but focused APDU data addressed to various
TCP ports of the DUT, at a rate less than that at which the DUT’s manufacturer claims DUT
protective measures will be invoked

Expected DUT response
The DUT is expected to continue network communication even under focused load while
adequately maintaining essential functions

Results Pass or fail

Remarks

EDSA-406-2.01 49/56

Table 23 – TCP.T17: Maintenance of service under high load: Raw TPDU flood of urgent data

Test ID TCP.T17

Test name Maintenance of service under high load: Raw TPDU flood of urgent data

Test description

A flurry of TCP TPDUs, padded to the maximum possible size, all of which are marked as Urgent
data, is sent to the DUT to attempt to overwhelm the DUT’s receive processing and storage
resources. All TPDUs have the TCP URG flag set in an at tempt to cause the DUT scheduler to
prioritize processing of the TPDUs over other tasks. The TPDU flood rate is selected to be a
high load test, not a saturation test. See [CRT.Rate_limiting] for additional requirements

Reference requirements Requirement TCP.R10

Test type Load stress

Test status Mandatory

Expected DUT behavior The DUT protects itself against a flood of received TCP TPDUs

Test object To evaluate the DUT’s ability to receive and withstand a burst of TPDUs addressed to it

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. The DUT vendor SHALL state a rate
limit below which protective measures are not expected to be invoked

Test procedure

The TD sends valid TPDUs containing a maximal amount of urgent data, addressed to the DUT,
at the vendor-specified rate limit. TPDUs SHOULD be padded to the maximum size possible
(according to the limiting MTU), typically, resulting in a 1460 B payload. All data in these TPDUs
is marked as urgent

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks

EDSA-406-2.01 50/56

Table 24 – TCP.T18: Maintenance of service under high load: Initial SYN flood

Test ID TCP.T18

Test name Maintenance of service under high load: Initial SYN flood

Test description

A large number of apparently valid TCP TPDUs that begin to initiate TCP connections which
subsequently fail to complete establishment (i.e., the full 3 -way TCP handshake) are sent to the
DUT to attempt to overwhelm the DUT’s connection state storage resources. The TPDU floo d
rate is selected to be a high load test, not a saturation test. See [CRT.Rate_limiting] for
additional requirements

Reference requirements Requirement TCP.R18

Test type Load stress

Test status Mandatory

Expected DUT behavior
The DUT protects itself against a flood of received TCP TPDUs that begin connection
negotiation and then leave the 3-phase connection negotiation process hanging, waiting to
complete

Test object
To evaluate the DUT’s ability to receive, withstand and recover from a burst of TCP connections
that are left in a half-open state, due to what is known as a SYN flood attack

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. The DUT vendor SHALL state a rate
limit below which protective measures are not expected to be invoked

Test procedure

The TD sends many valid TPDUs for currently unused (IP source address, TCP source port)
pairs addressed to the DUT‘s TCP port, with the TPDU SYN flag set, but fails to respond to the
consequent TCP TPDUs that have both SYN and ACK sent. The Broadcast IP address SHALL
be used as one of the IP source addresses

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks
During this flood the TD MAY attempt to establish and use other TCP connections to survey the
DUT’s behavior, with non-null traffic on those other surveying TCP connections

EDSA-406-2.01 51/56

Table 25 – TCP.T19: Maintenance of service under high load: Unused open connection flood

Test ID TCP.T19

Test name Maintenance of service under high load: Unused open connection flood

Test description

A large number of apparently valid TCP TPDUs are sent to the DUT to initiate TCP connections
and to subsequently complete the establishment of those connections (i.e., the full 3 -way TCP
handshake), after which the connections are left open but unused with no TPDU-payload traffic,
all in attempt to overwhelm the DUT’s connection state storage resources.

Reference requirements Requirement TCP.R19

Test type Load stress

Test status Mandatory

Expected DUT behavior

The DUT protects itself against a flood of received TCP TPDUs that complete the 3 -phase
connection negotiation process but fail to use the connections thus established to convey non -
null TPDU payloads, by closing and abandoning those idle connections when the overload
occurs

Test object
To evaluate the DUT’s ability to receive, withstand and recover from a burst of TCP connections
that are opened successfully but then left unused

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. The DUT vendor SHALL state a rate
limit below which protective measures are not expected to be invoked

Test procedure

The TD sends many valid TPDUs for currently unused (IP source address, TCP source port)
pairs addressed to the DUT‘s TCP port, with the TPDU SYN flag set, then responds to the
consequent TCP reply TPDUs from the DUT that have both SYN and ACK f lags set that are sent
to confirm establishment of the TCP connections.

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks
During this flood the TD MAY attempt to establish and use other TCP connections to survey the
DUT’s behavior, with non-null traffic on those other surveying TCP connections

EDSA-406-2.01 52/56

Table 26 – TCP.T20: Maintenance of service under high load: Segment reassembly flood

Test ID TCP.T20

Test name Maintenance of service under high load: Segment reassembly flood

Test description

A number of valid TCP TPDUs for established TCP connections, each of which has a sequence
number greater than the next expected sequence number, are sent to the DUT to attempt to
overwhelm the DUT’s storage resources or storage management . The TPDU flood rate is
selected to be a high load test, not a saturation test. See [CRT.Rate_limiting] for additional
requirements

Reference requirements Requirement TCP.R19

Test type Load stress

Test status Mandatory

Expected DUT behavior
The DUT protects itself against a flood of received TCP TPDUs that skip portions of the TCP
stream

Test object
To evaluate the DUT’s ability to receive, withstand and recover from a burst of incorrectly
advancing TCP sequence numbers, attempting to fill the DUT's segment reassembly buffers

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. The DUT vendor SHALL state a rate
limit below which protective measures are not expected to be invoked

Test procedure
The TD establishes one or more valid TCP connections for currently unused (IP source address,
TCP source port) pairs addressed to the DUT‘s TCP port, then repeatedly sends TCP TPDUs
that have incorrectly advancing sequence numbers.

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks
During this flood the TD MAY attempt to establish and use other TCP connections to survey the
DUT’s behavior, with non-null traffic on those other surveying TCP connections

EDSA-406-2.01 53/56

Table 27 – TCP.T21: Maintenance of service under high load:
Closed receive window flood

Test ID TCP.T21

Test name Maintenance of service under high load: Closed receive window flood

Test description
A number of established TCP connections each set their receive window size to zero while
requesting data from the DUT. The TPDU flood rate is selected to be a high load test, not a
saturation test. See [CRT.Rate_limiting] for additional requirements

Reference requirements Requirement TCP.R19

Test type Load stress

Test status Mandatory

Expected DUT behavior
The DUT protects itself against a flood of received TCP TPDUs for established TCP connections
that close their receive windows (by setting the receive window size to zero) at a time when they
have requested that the DUT transfer information to them

Test object
To evaluate the DUT’s ability to withstand and recover from a number of connections which set
their receive window size to zero, forcing buffering upon the DUT in an attempt to overload the
DUT’s resource management

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. The DUT vendor SHALL state a rate
limit below which protective measures are not expected to be invoked

Test procedure
The TD establishes one or more valid TCP connections for currently unused (IP source address,
TCP source port) pairs addressed to the DUT‘s TCP port, then repeatedly sends TCP TPDUs
that have their receive window closed (i.e., set to zero size).

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks
During this flood the TD MAY attempt to establish and use other TCP connections to survey the
DUT’s behavior, with non-null traffic on those other surveying TCP connections

EDSA-406-2.01 54/56

Table 28 – TCP.T22: Maintenance of service under high load: RST flood

Test ID TCP.T22

Test name Maintenance of service under high load: RST flood

Test description

A number of apparently valid TCP TPDUs for established TCP connections, each of which has
its RST flag set, are sent to the DUT to attempt to overwhelm the DUT’s connection state
processing and storage resources. The TPDU flood rate is selected to be a high load test, not a
saturation test. See [CRT.Rate_limiting] for additional requirements

Reference requirements Requirement TCP.R20

Test type Load stress

Test status Mandatory

Expected DUT behavior
The DUT protects itself against a flood of received TCP TPDUs that reset established TCP
connections

Test object
To evaluate the DUT’s ability to receive, withstand and recover from a burst of reset commands
for existing TCP connections, due to what is known as an RST flood attack

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. The DUT vendor SHALL state a rate
limit below which protective measures are not expected to be invoked

Test procedure
The TD establishes one or more valid TCP connections for currently unused (IP source address,
TCP source port) pairs addressed to the DUT‘s TCP port, then repeatedly sends TCP TPDUs
that have their RST flag set to reset those connections.

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks
During this flood the TD MAY attempt to establish and use other TCP connections to survey the
DUT’s behavior, with non-null traffic on those other surveying TCP connections

Table 29 – TCP.T23: Maintenance of service under high load: FIN flood

Test ID TCP.T23

Test name Maintenance of service under high load: FIN flood

Test description

A number of apparently valid TCP TPDUs for established TCP connections, each of which has
its FIN flag set, are sent to the DUT to attempt to disrupt the DUT's existing connections . The
TPDU flood rate is selected to be a high load test, not a saturation test. See [CRT.R ate_limiting]
for additional requirements

Reference requirements Requirement TCP.R19, 6.7.3.11

Test type Load stress

Test status Mandatory

Expected DUT behavior The DUT protects itself against a flood of received TCP TPDUs that attempt to close connections

Test object
To evaluate the DUT’s ability to receive, withstand and recover from a burst of close commands
for existing TCP connections, due to what is known as a FIN flood attack

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. The DUT vendor SHALL state a rate
limit below which protective measures are not expected to be invoked

Test procedure

The TD establishes one or more valid TCP connections for currently unused (IP source address,
TCP source port) pairs addressed to the DUT‘s TCP port, then repeatedly sends TCP TPDUs
that have their FIN flag set as if they were spoofed TPDUs tha t attempt to interfere with and
close those connections.

Expected DUT response The DUT continues to adequately maintain essential functions

Results Pass or fail

Remarks
During this flood the TD MAY attempt to use those TCP connections whose FIN TPDUs are
spoofed as part of the attack, as well as to establish and use other TCP connections, to survey
the DUT’s behavior with non-null traffic on those TCP connections

EDSA-406-2.01 55/56

Table 30 – TCP.T24:Maintenance of service under high load, including network saturation:
Raw TPDU flood

Test ID TCP.T24

Test name Maintenance of service under high load, including network saturation : Raw TPDU flood

Test description

A flurry of TCP TPDUs is sent to the DUT to attempt to overwhelm the DUT’s receive processing
and storage resources. . This test proceeds in two phases:

 Phase 1: as a high load test during which the DUT SHOULD respond normally to received
messages

 Phase 2: as a network saturation test during which the DUT MAY invoke protecti ve
behaviors such as blocking network reception but SHOULD otherwise function normally.

See [CRT.Rate_limiting] for additional requirements

Reference requirements Requirement TCP.R10

Test type Load stress

Test status Mandatory

Expected DUT behavior

The DUT protects itself against a flood of received TCP TPDUs

 Phase 1: The DUT continues to function, adequately maintaining all essential functions, in
the presence of a sudden burst of received TCP TPDUs, provided that the load thus induced
is less than that claimed as supportable by the DUT vendor;

 Phase 2: The DUT adequately maintains essential control, even if it must reduce or cease
other essential functions during the period of network overload.

Test object To evaluate the DUT’s ability to receive and withstand a burst of TPDUs addressed to it

Test configuration
A TD is connected to the DUT by an underlying switched network that uses either IPv4 or IPv6
addressing, as specified in [CRT.Test_configuration_1]. The DUT vendor SHALL state a rate
limit below which protective measures are not expected to be invoked

Test procedure

The TD sends valid TCP TPDUs that are either explicitly or implicitly addressed to the DUT

 Phase 1: at a rate less than that at which the DUT’s manufacturer claims DUT protective
measures will be invoked;

 Phase 2: at a rate up to the auto-negotiated maximum rate of the underlying network,
maintains that high load rate for two minutes.

TCP TPDUs sent to the DUT MAY be conveyed by IP packets using any of the types of explicit
or implicit IP addressing (e.g., unicast, broadcast ,multicast, or (with IPv6) anycast), in any
combination

Expected DUT response

 Phase 1: The DUT is expected to continue network communication even under high load
while adequately maintaining essential functions.

 Phase 2: The DUT is expected to activate protective measures at some (vendor unspecified)
level of resource demand, and to recover some reasonable time interval after that demand
for resources is reduced substantially below the level at which the protective measures were
triggered. The DUT is expected to adequately maintain essential control throughout the test

Results Pass or fail

Remarks
The DUT vendor is not required to be able to predict the messaging rate at which such protective
measures are invoked, but SHOULD be able to put an upper bound on time a fter the stimulus
ceases before the recovery is complete

EDSA-406-2.01 56/56

Bibliography

IANA protocol and number registries, http://www.iana.org/protocols/
 registries of various assigned code points for standard Internet protocols

NOTE For each RFCnnn, the controlling version can be found at http://tools.ietf.org/html/rfcnnn.

RFC1072, TCP extensions for long-delay paths

RFC1185, TCP extensions for high-speed paths

RFC1750, Randomness recommendations for security

RFC1948, Defending against sequence number attacks

RFC2581, TCP congestion control

RFC2827, Network ingress filtering: Defeating denial of service attacks which employ IP source address
spoofing

RFC3704, Ingress filtering for multihomed networks

NIST statistical test suite, at http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html

Dieharder statistical test suite, at http://www.phy.duke.edu/~rgb/General/dieharder.php

Denial of service attacks: Teardrop and Land , at http://users.tkk.fi/lhuovine/study/hacker98/dos.html

Sockstress, at http://en.wikipedia.org/wiki/Sockstress

— — — — — —

http://www.iana.org/protocols/
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://users.tkk.fi/lhuovine/study/hacker98/dos.html
http://en.wikipedia.org/wiki/Sockstress

